ترغب بنشر مسار تعليمي؟ اضغط هنا

INTEGRAL detection of hard X-rays from NGC 6334: Nonthermal emission from colliding winds or an AGN?

77   0   0.0 ( 0 )
 نشر من قبل Bykov Andrei
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of hard X-ray emission from the field of the star-forming region NGC 6334 with the the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The JEM-X monitor and ISGRI imager aboard INTEGRAL and Chandra ACIS imager were used to construct 3-80 keV images and spectra of NGC 6334. The 3-10 keV and 10-35 keV images made with JEM-X show a complex structure of extended emission from NGC 6334. The ISGRI source detected in the energy ranges 20-40 keV and 40-80 keV coincides with the NGC 6334 ridge. The 20-60 keV flux from the source is (1.8+-0.37)*10(-11) erg cm(-2) s(-1). Spectral analysis of the source revealed a hard power-law component with a photon index about 1. The observed X-ray fluxes are in agreement with extrapolations of X-ray imaging observations of NGC 6334 by Chandra ACIS and ASCA GIS. The X-ray data are consistent with two very different physical models. A probable scenario is emission from a heavily absorbed, compact and hard Chandra source that is associated with the AGN candidate radio source NGC 6334B. Another possible model is the extended Chandra source of nonthermal emission from NGC 6334 that can also account for the hard X-ray emission observed by INTEGRAL. The origin of the emission in this scenario is due to electron acceleration in energetic outflows from massive early type stars. The possibility of emission from a young supernova remnant, as suggested by earlier infrared observations of NGC 6334, is constrained by the non-detection of 44Ti lines.


قيم البحث

اقرأ أيضاً

113 - Yuichiro Ezoe 2005
Chandra ACIS-I data of the molecular cloud and HII region complex NGC 6334 were analyzed. The hard X-ray clumps detected with ASCA (Sekimoto et al. 2000) were resolved into 792 point sources. After removing the point sources, an extended X-ray emissi on component was detected over a 5x9 pc2 region, with the 0.5-8 keV absorption-corrected luminosity of 2x10^33 erg/s. The contribution from faint point sources to this extended emission was estimated as at most ~20 %, suggesting that most of the emission is diffuse in nature. The X-ray spectrum of the diffuse emission was observed to vary from place to place. In tenuous molecular cloud regions with hydrogen column density of 0.5~1x10^22 cm-2, the spectrum can be represented by a thermal plasma model with temperatures of several keV. The spectrum in dense cloud cores exhibits harder continuum, together with higher absorption more than ~3x10^22 cm-2. In some of such highly obscured regions, the spectrum show extremely hard continua equivalent to a photon index of ~1, and favor non-thermal interpretation. These results are discussed in the context of thermal and non-thermal emissions, both powered by fast stellar winds from embedded young early-type stars through shock transitions.
75 - G. Belanger 2003
This letter presents the first results of an observational campaign to study the Galactic Centre with INTEGRAL. The mosaicked images obtained with the IBIS/ISGRI coded aperture instrument in the energy ranges 20-40 and 40-100 keV, give a yet unseen v iew of the high-energy sources of this region in hard X- and gamma-rays with an angular resolution of 12 arcmin (FWHM). We report on the discovery of a source, IGR J17456-2901, coincident with the Galactic Nucleus SgrA* to within 0.9 arcmin. Located at R.A.(J2000.0) = 17h45m38.5s, Dec.(J2000.0) = -29:01:15, the source is visible up to about 100 keV with a 20-100 keV luminosity at 8 kpc of (2.89 +/- 0.41) x 10^35 ergs/s. Although the new INTEGRAL source cannot unequivocally be associated to the Galactic Nucleus, this is the first report of significant hard X-ray emission from within the inner 10 arcmin of the Galaxy and a contribution from the galactic supermassive black hole itself cannot be excluded.
Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.
130 - Mark J. Henriksen 2011
Observations made with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter (PS PC) spectrum with a 0.5 - 15 keV energy range shows excess hard emission above 4 keV. Addition of a powerlaw component with spectral index of 2.6 - 2.8 and luminosity of 2.6 x10^42 ergs/s within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point source subtracted, non-thermal component is 2.2 - 3.0x10^42 ergs/s . The cosmic-ray electron energy density is 3.6 x10^[-12] ergs cm-3 and the average magnetic field is 0.034 muGauss in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5x10^4, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the groups small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely to the related to the active galaxy and is most likely a relic of the merger. The energy in cosmic-rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.
172 - J. M. Pittard , B. Dawson 2018
We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio. We find also that the shocks in the primary (dominant) and secondary winds flare by approx 20 degrees compared to the CD, and that the entire secondary wind is shocked when the wind momentum ratio < 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity scales with the wind momentum ratio, and that the spectrum softens slightly as the wind momentum ratio decreases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا