ترغب بنشر مسار تعليمي؟ اضغط هنا

The soft and hard X-rays thermal emission from star cluster winds with a supernova explosion

93   0   0.0 ( 0 )
 نشر من قبل Antonio Castellanos Antonio
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.



قيم البحث

اقرأ أيضاً

We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.
The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from th e ICM at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial (Fusco-Femiano et al. 2004; Rossetti & Molendi 2004). We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its non-thermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and non-thermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field (Schuecker et al. 2004). We fail to find statistically significant evidence for non-thermal emission in the spectra, which are better described by only a single or multi-temperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of non-thermal emission of 6.0x10^-12 erg/s/cm^2 (20-80 keV, for photon index of 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 microG. Our flux upper limit is 2.5x lower than the detected non-thermal flux from RXTE (Rephaeli & Gruber 2002) and BeppoSAX (Fusco-Femiano et al. 2004). However, if the non-thermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that ~50-67% of the emission might go undetected, which could make our limit consistent with these detections. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL (Eckert et al. 2007) and Swift (Ajello et al. 2009) data.
We report an observation of X-ray emission from the exciting region of Cepheus A with the Chandra/ACIS instrument. What had been an unresolved X-ray source comprising the putative power sources is now resolved into at least 3 point-like sources, each with similar X-ray properties and differing radio and submillimeter properties. The sources are HW9, HW3c, and a new source that is undetected at other wavelengths h10. They each have inferred X-ray luminosities >= 10^31 erg s^-1 with hard spectra, T >= 10^7 K, and high low-energy absorption equivalent to tens to as much as a hundred magnitudes of visual absorption. The star usually assumed to be the most massive and energetic, HW2, is not detected with an upper limit about 7 times lower than the detections. The X-rays may arise via thermal bremsstrahlung in diffuse emission regions associated with a gyrosynchrotron source for the radio emission, or they could arise from powerful stellar winds. We also analyzed the Spitzer/IRAC mid-IR observation from this star-formation region and present the X-ray results and mid-IR classifications of the nearby stars. HH 168 is not as underluminous in X-rays as previously reported.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected o nly from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of $_{sim}^<$10$^{38}$ erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 10$^{38}$ erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا