ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced small-scale Faraday rotation in the Galactic spiral arms

45   0   0.0 ( 0 )
 نشر من قبل Marijke Haverkorn
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Haverkorn




اسأل ChatGPT حول البحث

We present an analysis of the rotation measures (RMs) of polarized extragalactic point sources in the Southern Galactic Plane Survey. This work demonstrates that the statistics of fluctuations in RM differ for the spiral arms and the interarm regions. Structure functions of RM are flat in the spiral arms, while they increase in the interarms. This indicates that there are no correlated RM fluctuations in the magneto-ionized interstellar medium in the spiral arms on scales larger than ~ 0.5 deg, corresponding to ~ 17 pc in the nearest spiral arm probed. The non-zero slopes in interarm regions imply a much larger scale of RM fluctuations. We conclude that fluctuations in the magneto-ionic medium in the Milky Way spiral arms are not dominated by the mainly supernova-driven turbulent cascade in the global ISM but are probably due to a different source, most likely H II regions.

قيم البحث

اقرأ أيضاً

This work gives an update to existing reconstructions of the Galactic Faraday rotation sky by processing almost all Faraday rotation data sets available at the end of the year 2020. Observations of extra-Galactic sources in recent years have, among o ther regions, further illuminated the previously under-constrained southern celestial sky, as well as parts of the inner disc of the Milky Way. This has culminated in an all-sky data set of 55,190 data points, which is a significant expansion on the 41,330 used in previous works, hence making an updated separation of the Galactic component a promising venture. The increased source density allows us to present our results in a resolution of about $1.3cdot 10^{-2}, mathrm{deg}^2$ ($46.8,mathrm{arcmin}^2$), which is a twofold increase compared to previous works. As for previous Faraday rotation sky reconstructions, this work is based on information field theory, a Bayesian inference scheme for field-like quantities which handles noisy and incomplete data. In contrast to previous reconstructions, we find a significantly thinner and pronounced Galactic disc with small-scale structures exceeding values of several thousand $mathrm{rad},mathrm{m}^{-2}$. The improvements can mainly be attributed to the new catalog of Faraday data, but are also supported by advances in correlation structure modeling within numerical information field theory. We furthermore give a detailed discussion on statistical properties of the Faraday rotation sky and investigate correlations to other data sets.
A dielectric vertical cavity is used to study the spin dynamics of molecularly self-assembled colloidal CdSe quantum dots (QDs). Using this structure, a nearly 30-fold enhancement of Faraday rotation is observed, which scales with the quality factor of the cavity. In this classical nonperturbative regime, the amplified rotation is attributed to optically excited spins interacting with multiple passes of the probe photons in the cavity. By applying this general planar cavity motif to Faraday rotation, dynamical measurements are accessible at extremely low powers on relatively small numbers of quantum confined spins. In CdSe QDs, low power measurements reveal that contributions from exciton and electron spin precession are largely dependent upon the power of excitation. We demonstrate that this scheme is amenable to both soft and hard systems as a means to increase detection sensitivity.
We present first results for Faraday rotation of compact polarized sources (1 to 2 GHz continuum) in The HI/OH/Recombination line (THOR) survey of the inner Galaxy. In the Galactic longitude range 39 degr < l < 52 degr, we find rotation measures in t he range -310 rad/m2 < RM < +4219 rad/m2, with the highest values concentrated within a degree of l = 48 degrees at the Sagittarius arm tangent. Most of the high RMs arise in diffuse plasma, along lines of sight that do not intersect HII regions. For l > 49 degr, RM drops off rapidly, while at l < 47 degr, the mean RM is higher with a larger standard deviation than at l > 49 degr. We attribute the RM structure to the compressed diffuse Warm Ionized Medium in the spiral arm, upstream of the major star formation regions. The Sagittarius arm acts as a significant Faraday screen inside the Galaxy. This has implications for models of the Galactic magnetic field and the expected amount of Faraday rotation of Fast Radio Bursts from their host galaxies. We emphasize the importance of sensitivity to high Faraday depth in future polarization surveys.
Faraday rotation measurements of polarized extragalactic sources probe the Galactic magnetized, ionized interstellar medium. Rotation measures of these sources behind the inner Galactic plane are used to explore characteristics of the structure in th e spiral arms and in interarm regions. Structure in the spiral arms has a characteristic outer scale of a few parsecs only, whereas interarm regions typically show structure up to scales of hundreds of parsecs. The data indicate that in the spiral arms, the random component of the magnetic field dominates over the regular field, but in the interarm regions the random and regular field components may be comparable, and a few times weaker than the random magnetic field in the spiral arms.
89 - R. Baptista 2005
We report the analysis of time-resolved spectroscopy of IP Pegasi in outburst with eclipse mapping techniques to investigate the location and geometry of the observed spiral structures. We were able to obtain an improved view of the spiral structures with the aid of light curves extracted in velocity bins matching the observed range of velocities of the spiral arms combined with a double default map tailored for reconstruction of asymmetric structures. Two-armed spiral structures are clearly seen in all eclipse maps. The arms are located at different distances from the disc centre. The ``blue arm is farther out in the disc (R= 0.55 +/- 0.05 R_{L1}) than the ``red arm (R= 0.30 +/- 0.05 R_{L1}). There are evidences that the velocity of the emitting gas along the spiral pattern is lower than the Keplerian velocity for the same disc radius. The discrepancy is smaller in the outer arm (measured velocities 10-15 per cent lower than Keplerian) and is more significant in the inner arm (observed velocities up to 40 per cent lower than Keplerian). We measured the opening angle of the spirals from the azimuthal intensity distribution of the eclipse maps to be phi= 25 +/- 3 degrees. A comparison with similar measurements on data at different outburst stages reveals that the opening angle of the spiral arms in IP Peg decreases while the outbursting accretion disc cools and shrinks, in agreement with the expected evolution of a tidally driven spiral wave. The sub-Keplerian velocities along the spiral pattern and the clear correlation between the opening angle of the spirals and the outburst stage favors the interpretation of these asymmetric structures as tidally-induced spiral shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا