ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong excess Faraday rotation on the Inside of the Sagittarius spiral arm

45   0   0.0 ( 0 )
 نشر من قبل Jeroen M. Stil
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present first results for Faraday rotation of compact polarized sources (1 to 2 GHz continuum) in The HI/OH/Recombination line (THOR) survey of the inner Galaxy. In the Galactic longitude range 39 degr < l < 52 degr, we find rotation measures in the range -310 rad/m2 < RM < +4219 rad/m2, with the highest values concentrated within a degree of l = 48 degrees at the Sagittarius arm tangent. Most of the high RMs arise in diffuse plasma, along lines of sight that do not intersect HII regions. For l > 49 degr, RM drops off rapidly, while at l < 47 degr, the mean RM is higher with a larger standard deviation than at l > 49 degr. We attribute the RM structure to the compressed diffuse Warm Ionized Medium in the spiral arm, upstream of the major star formation regions. The Sagittarius arm acts as a significant Faraday screen inside the Galaxy. This has implications for models of the Galactic magnetic field and the expected amount of Faraday rotation of Fast Radio Bursts from their host galaxies. We emphasize the importance of sensitivity to high Faraday depth in future polarization surveys.



قيم البحث

اقرأ أيضاً

381 - Y. W. Wu , M. Sato , M. J. Reid 2014
We report measurements of parallaxes and proper motions of ten high-mass star-forming regions in the Sagittarius spiral arm of the Milky Way as part of the BeSSeL Survey with the VLBA. Combining these results with eight others from the literature, we investigated the structure and kinematics of the arm between Galactocentric azimuth around -2 and 65 deg. We found that the spiral pitch angle is 7.3 +- 1.5 deg; the arms half-width, defined as the rms deviation from the fitted spiral, is around 0.2 kpc; and the nearest portion of the Sagittarius arm is 1.4 +- 0.2 kpc from the Sun. Unlike for adjacent spiral arms, we found no evidence for significant peculiar motions of sources in the Sagittarius arm opposite to Galactic rotation.
68 - Y. W. Wu , M. J. Reid , N. Sakai 2019
As part of the BeSSeL Survey, we report trigonometric parallaxes and proper motions of molecular maser sources associated with 13 distant high mass star forming regions in the Sagittarius spiral arm of the Milky Way. In particular, we obtain improved parallax distance estimates for three well studied regions: 1.9 +0.1/-0.1 kpc for M17, 5.3 +1.3/-0.9 kpc for W51, and 7.9 +0.9/-0.7 kpc for GAL 045.5+00.0. Peculiar motions for all but one source are less than 20 km/s. We fit a log-periodic spiral to the locations and estimate an average pitch angle of 7.2+-1.9 deg. We find that the section of the arm beyond the tangent point in the first quadrant of the Milky Way appears 15 pc below the IAU-defined Galactic plane.
We present the pilot results of the `MAGMO project, targeted observations of ground-state hydroxyl masers towards sites of 6.7-GHz methanol maser emission in the Carina-Sagittarius spiral arm tangent, Galactic longitudes 280 degrees to 295 degrees. T he `MAGMO project aims to determine if Galactic magnetic fields can be traced with Zeeman splitting of masers associated with star formation. Pilot observations of 23 sites of methanol maser emission were made, with the detection of ground-state hydroxyl masers towards 11 of these and six additional offset sites. Of these 17 sites, nine are new detections of sites of 1665-MHz maser emission, three of them accompanied by 1667-MHz emission. More than 70% of the maser features have significant circular polarization, whilst only ~10% have significant linear polarization (although some features with up to 100% linear polarization are found). We find 11 Zeeman pairs across six sites of high-mass star formation with implied magnetic field strengths between -1.5 mG and +3.8 mG and a median field strength of +1.6 mG. Our measurements of Zeeman splitting imply that a coherent field orientation is experienced by the maser sites across a distance of 5.3+/-2.0 kpc within the Carina-Sagittarius spiral arm tangent.
The study of dynamical properties of Galactic open clusters is a fundamental prerequisite for the comprehension of their dissolution processes. In this work, we characterized 12 open clusters, namely: Collinder 258, NGC 6756, Czernik 37, NGC 5381, Ru precht 111, Ruprecht 102, NGC 6249, Basel 5, Ruprecht 97, Trumpler 25, ESO 129-SC32 and BH 150, projected against dense stellar fields. In order to do that, we employed Washington $CT_{1}$ photometry and GAIA DR2 astrometry, combined with a decontamination algorithm applied to the three-dimensional astrometric space of proper motions and parallaxes. From the derived membership likelihoods, we built decontaminated colour-magnitude diagrams, while structural parameters were obtained from King profiles fitting. Our analysis revealed that they are relatively young open clusters (log($t$ yr$^{-1}$) $sim7.3-8.6$), placed along the Sagittarius spiral arm, and at different internal dynamical stages. We found that the half-light radius to Jacobi radius ratio, the concentration parameter and the age to relaxation time ratio describe satisfactorily their different stages of dynamical evolution. Those relative more dynamically evolved open clusters have apparently experienced more important low-mass star loss.
This work gives an update to existing reconstructions of the Galactic Faraday rotation sky by processing almost all Faraday rotation data sets available at the end of the year 2020. Observations of extra-Galactic sources in recent years have, among o ther regions, further illuminated the previously under-constrained southern celestial sky, as well as parts of the inner disc of the Milky Way. This has culminated in an all-sky data set of 55,190 data points, which is a significant expansion on the 41,330 used in previous works, hence making an updated separation of the Galactic component a promising venture. The increased source density allows us to present our results in a resolution of about $1.3cdot 10^{-2}, mathrm{deg}^2$ ($46.8,mathrm{arcmin}^2$), which is a twofold increase compared to previous works. As for previous Faraday rotation sky reconstructions, this work is based on information field theory, a Bayesian inference scheme for field-like quantities which handles noisy and incomplete data. In contrast to previous reconstructions, we find a significantly thinner and pronounced Galactic disc with small-scale structures exceeding values of several thousand $mathrm{rad},mathrm{m}^{-2}$. The improvements can mainly be attributed to the new catalog of Faraday data, but are also supported by advances in correlation structure modeling within numerical information field theory. We furthermore give a detailed discussion on statistical properties of the Faraday rotation sky and investigate correlations to other data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا