ﻻ يوجد ملخص باللغة العربية
This work presents a uniform and homogeneous study of chemical abundances of refractory elements in 101 stars with and 94 without known planetary companions. We carry out an in-depth investigation of the abundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The new comparison sample, spanning the metallicity range -0.70< [Fe/H]< 0.50, fills the gap that previously existed, mainly at high metallicities, in the number of stars without known planets. We used an enlarged set of data including new observations, especially for the field ``single comparison stars. The line list previously studied by other authors was improved: on average we analysed 90 spectral lines in every spectrum and carefully measured more than 16600 equivalent widths (EW) to calculate the abundances. We investigate possible differences between the chemical abundances of the two groups of stars, both with and without planets. The results are globally comparable to those obtained by other authors, and in most cases the abundance trends of planet-host stars are very similar to those of the comparison sample. This work represents a step towards the comprehension of recently discovered planetary systems. These results could also be useful for verifying galactic models at high metallicities and consequently improve our knowledge of stellar nucleosynthesis and galactic chemical evolution.
The last few years has seen a dramatic increase in the number of exoplanets known and in the range of methods for characterising their atmospheric properties. At the same time, new discoveries of increasingly cooler brown dwarfs have pushed down thei
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes
The results of a new spectroscopic analysis of HD75289, recently reported to harbor a Jovian-mass planet, are presented. From high-resolution, high-S/N ratio spectra, we derive [Fe/H] = +0.28 +/- 0.05 for this star, in agreement with the spectroscopi
The Be II 3131 A doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho 1 Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been propose
We analyzed the behavior of the rotational velocity in the parent stars of extrasolar planets. Projected rotational velocity v sin i and angular momentum were combined with stellar and planetary parameters, for a unique sample of 147 stars, amounting