ﻻ يوجد ملخص باللغة العربية
The Be II 3131 A doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho 1 Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been proposed to have a planetary companion of ~2 M_Jup, is known to be depleted in lithium by a factor larger than 6 with respect to 16 Cyg A. Differences in their rotational histories which could induce different rates of internal mixing of material, and the ingestion of a similar planet by 16 Cyg A are discussed as potential explanations. The existence of two other solar-type stars which are candidates to harbour planetary-mass companions and which show lithium and beryllium abundances close to those of 16 Cyg A, requires a more detailed inspection of the peculiarities of the 16 Cyg system. For rho 1 Cnc, which is the coolest known object candidate to harbour a planetary-mass companion (M > 0.85 M_Jup), we establish a precise upper limit for its beryllium abundance, showing a strong Be depletion which constrains the available mixing mechanisms. Observations of similar stars without companions are required to asses the potential effects of the planetary companion on the observed depletion. It has been recently claimed that rho 1 Cnc appears to be a subgiant. If this were the case, the observed strong Li and Be depletions could be explained by a dilution process taking place during its post-main sequence evolution.
We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predi
The results of a new spectroscopic analysis of HD75289, recently reported to harbor a Jovian-mass planet, are presented. From high-resolution, high-S/N ratio spectra, we derive [Fe/H] = +0.28 +/- 0.05 for this star, in agreement with the spectroscopi
In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived th
We analyzed the behavior of the rotational velocity in the parent stars of extrasolar planets. Projected rotational velocity v sin i and angular momentum were combined with stellar and planetary parameters, for a unique sample of 147 stars, amounting
The results of new spectroscopic analyses of 20 recently reported extrasolar planet parent stars are presented. The companion of one of these stars, HD 10697, has recently been shown to have a mass in the brown dwarf regime; we find [Fe/H] $= +0.16$