ﻻ يوجد ملخص باللغة العربية
We discuss our recent discovery of the giant radio emission from the Crab pulsar at its high frequency components (HFCs) phases and show the polarization characteristic of these pulses. This leads us to a suggestion that there is no difference in the emission mechanism of the main pulse (MP), interpulse (IP) and HFCs. We briefly review the size distributions of the Crab giant radio pulses (GRPs) and discuss general characteristics of the GRP phenomenon in the Crab and other pulsars.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our
We detected a correlation between optical and giant radio pulse emission from the Crab pulsar. Optical pulses coincident with the giant radio pulses were on average 3% brighter than those coincident with normal radio pulses. Combined with the lack of
The Crab Pulsars radio emission is unusual, consisting predominantly of giant pulses, with durations of about a micro-second but structure down to the nano-second level, and brightness temperatures of up to $10^{37},$K. It is unclear how giant pulses
We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse
The paper presents an analysis of dual-polarization observations of the Crab pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time resolution of 250 ns. A lower limit for the intensities of giant pulses is estimated by assuming