ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematics of Crab Giant Pulses

91   0   0.0 ( 0 )
 نشر من قبل Akanksha Bij
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Crab Pulsars radio emission is unusual, consisting predominantly of giant pulses, with durations of about a micro-second but structure down to the nano-second level, and brightness temperatures of up to $10^{37},$K. It is unclear how giant pulses are produced, but they likely originate near the pulsars light cylinder, where corotating plasma approaches the speed of light. We report observations in the 400-800 MHz frequency band, where the pulses are broadened by scattering in the surrounding Crab nebula. We find that some pulse frequency spectra show strong bands, which vary during the scattering tail, in one case showing a smooth upward drift. While the banding may simply reflect interference between nano-second scale pulse components, the variation is surprising, as in the scattering tail the only difference is that the source is observed via slightly longer paths, bent by about an arcsecond in the nebula. The corresponding small change in viewing angle could nevertheless reproduce the observed drift by a change in Doppler shift, if the plasma that emitted the giant pulses moved highly relativistically, with a Lorentz factor $gammasim10^4$ (and without much spread in $gamma$). If so, this would support models that appeal to highly relativistic plasma to transform ambient magnetic structures to coherent GHz radio emission, be it for giant pulses or for potentially related sources, such as fast radio bursts.

قيم البحث

اقرأ أيضاً

We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse phases, respectively. A few GRPs detected at both 0.3 and 8.4 GHz are the most wide-band samples ever reported. In the frequency range from 0.3 to 2.2 GHz, we find that about 70% or more of the GRP spectra are consistent with single power laws and the spectral indices of them are distributed from $-4$ to $-1$. We also find that a significant number of GRPs have such a hard spectral index (approximately $-1$) that the fluence at 0.3 GHz is below the detection limit (dim-hard GRPs). Stacking light curves of such dim-hard GRPs at 0.3 GHz, we detect consistent enhancement compared to the off-GRP light curve. Our samples show apparent correlations between the fluences and the spectral hardness, which indicates that more energetic GRPs tend to show softer spectra. Our comprehensive studies on the GRP spectra are useful materials to verify the GRP model of fast radio bursts in future observations.
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 -- 300 keV band and the Kashima NICT radio observ atory in the 1.4 -- 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission.The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases.All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter- pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 -- 300 keV band.The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase.Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports.Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) $times 10^{-11}$ erg cm$^{-2}$, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases.However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a $>0.02$% brightening of the pulse-peak flux under such conditions.
We present statistical analysis of a fluence limited sample of over 1100 giant pulses from the Crab pulsar, with fluence > 130 Jy ms at ~1330 MHz. These were detected in ~260 hours of observation with the National Centre for Radio Astrophysics (NCRA) -15m radio telescope. We find that the pulse energy distribution follows a power law with index $alphaapprox$-3 at least up to a fluence of ~5 Jy s. The power law index agrees well with that found for lower energy pulses in the range 3-30 Jy ms. The fluence distribution of the Crab pulsar hence appears to follow a single power law over ~3 orders of magnitude in fluence. We do not see any evidence for the flattening at high fluences reported by earlier studies. We also find that at these fluence levels, the rate of giant-pulse emission varies by as much as a factor of ~5 on time-scales of a few days, although the power law index of the pulse-energy distribution remains unchanged. The slope of the fluence distribution for Crab giant pulses is similar to that recently determined for the repeating FRB 121102. We also find an anti-correlation between the pulse fluence and the pulse width, so that more energetic pulses are preferentially shorter.
Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars, lasting a few microseconds. GRPs are hundreds to thousands of times brighter than regular pulses from these sources. The only GRP-associated emission outside radio wavelengths is from the Crab Pulsar, where optical emission is enhanced by a few percent during GRPs. We observed the Crab Pulsar simultaneously at X-ray and radio wavelengths, finding enhancement of the X-ray emission by $3.8pm0.7%$ (a 5.4$sigma$ detection) coinciding with GRPs. This implies that the total emitted energy from GRPs is tens to hundreds of times higher than previously known. We discuss the implications for the pulsar emission mechanism and extragalactic fast radio bursts.
64 - A. Jessner 2004
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz (Moffett & Hankins, 1996). This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ~6.7 x 10^4 erg cm^-3 and brightness temperatures of 10^31 K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا