ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

79   0   0.0 ( 0 )
 نشر من قبل Weijun Zheng
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.



قيم البحث

اقرأ أيضاً

182 - B. Parise , P. Bergman , K. Menten 2014
In 2011, hydrogen peroxide (HOOH) was observed for the first time outside the solar system (Bergman et al., A&A, 2011, 531, L8). This detection appeared a posteriori quite natural, as HOOH is an intermediate product in the formation of water on the s urface of dust grains. Following up on this detection, we present a search for HOOH in a diverse sample of sources in different environments, including low-mass protostars and regions with very high column densities, such as Infrared Dark Clouds (IRDCs). We do not detect the molecule in any other source than Oph A, and derive 3$sigma$ upper limits for the abundance of HOOH relative to H$_2$ lower than in Oph A for most sources. This result sheds a different light on our understanding of the detection of HOOH in Oph A, and shifts the puzzle to why this source seems to be special. Therefore we rediscuss the detection of HOOH in Oph A, as well as the implications of the low abundance of HOOH, and its similarity with the case of O$_2$. Our chemical models show that the production of HOOH is extremely sensitive to the temperature, and favored only in the range 20$-$30 K. The relatively high abundance of HOOH observed in Oph A suggests that the bulk of the material lies at a temperature in the range 20$-$30 K.
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyzer architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical (PEC) water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional PEC systems, enabling safe and potentially affordable solar hydrogen production.
Context: In the laboratory, hydrogen peroxide (HOOH) was proven to be an intermediate product in the solid-state reaction scheme that leads to the formation of water on icy dust grains. When HOOH desorbs from the icy grains, it can be detected in the gas phase. In combination with water detections, it may provide additional information on the water reaction network. Hydrogen peroxide has previously been found toward $rho$ Oph A. However, further searches for this molecule in other sources failed. Hydrogen peroxide plays a fundamental role in the understanding of solid-state water formation and the overall water reservoir in young stellar objects (YSOs). Without further HOOH detections, it is difficult to assess and develop suitable chemical models that properly take into account the formation of water on icy surfaces. Aims: The objective of this work is to identify HOOH in YSOs and thereby constrain the grain surface water formation hypothesis. Methods: Using an astrochemical model based on previous work in combination with a physical model of YSOs, the sources R CrA-IRS,5A, NGCC1333-IRAS,2A, L1551-IRS,5, and L1544 were identified as suitable candidates for an HOOH detection. Long integration times on the APEX 12m and IRAM 30m telescopes were applied to search for HOOH signatures in these sources. Results: None of the four sources under investigation showed convincing spectral signatures of HOOH. The upper limit for HOOH abundance based on the noise level at the frequency positions of this molecule for the source R CrA-IRS,5A was close to the predicted value. For NGC1333-IRAS 2A, L1544, and L1551-IRS,5, the model overestimated the hydrogen peroxide abundances.
Low energy electron attachment to mixed (H$_2$)$_x$/(O$_2$)$_y$ clusters and their deuterated analogues has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO$_2$$^{-}$ and H$_2$O$^{-}$ ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H$_2$ rather than O$_2$. The electron resonances for H$_2$ can lead to dissociative electron attachment (DEA), just as for the free H$_2$ molecule. However, there is evidence that the resonance in H$_2$ can also lead to rapid electron transfer to O$_2$, which then induces DEA of the O$_2$. This kind of excitation transfer has not, as far as we are aware, been reported previously
Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell anode and cathode were estimated as a function of humidity and temperature by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE) . Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in hydrochloric acid (HClO4). The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. The H2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water activity. The H2O2 selectivity in ORR was independent of oxygen concentration but increased with decrease in water activity (i.e., decreased humidity). Potential dependent activation energy for the H2O2 formation reaction was estimated from data obtained at different temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا