ﻻ يوجد ملخص باللغة العربية
Low energy electron attachment to mixed (H$_2$)$_x$/(O$_2$)$_y$ clusters and their deuterated analogues has been investigated for the first time. These experiments were carried out using liquid helium nanodroplets to form the clusters, and the effect of the added electron was then monitored via mass spectrometry. There are some important differences between electron attachment to the pure clusters and to the mixed clusters. A particularly notable feature is the formation of HO$_2$$^{-}$ and H$_2$O$^{-}$ ions from an electron-induced chemical reaction between the two dopants. The chemistry leading to these anions appears to be driven by electron resonances associated with H$_2$ rather than O$_2$. The electron resonances for H$_2$ can lead to dissociative electron attachment (DEA), just as for the free H$_2$ molecule. However, there is evidence that the resonance in H$_2$ can also lead to rapid electron transfer to O$_2$, which then induces DEA of the O$_2$. This kind of excitation transfer has not, as far as we are aware, been reported previously
We report the stopping of a molecular oxygen beam, using a series of pulsed electromagnetic coils. A series of coils is fired in a timed sequence to bring the molecules to near-rest, where they are detected with a quadrupole mass spectrometer. Applications to cold chemistry are discussed.
Clusters of para-hydrogen (pH2) have been predicted to exhibit superfluid behavior, but direct observation of this phenomenon has been elusive. Combining experiments and theoretical simulations, we have determined the size evolution of the superfluid
Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. P
Hydrogen bond (H-bond) covalency has recently been observed in ice and liquid water, while the penetrating molecular orbitals (MOs) in the H-bond region of most typical water dimer system, (H2O)2, have also been discovered. However, obtaining the qua
Versatile quantum modes emerge for plasmon describing the collective oscillations of free electrons in metallic nanoparticles when the particle sizes are greatly reduced. Rather than traditional nanoscale study, the understanding of quantum plasmon d