ﻻ يوجد ملخص باللغة العربية
We show how to estimate the covariance of the power spectrum of a statistically homogeneous and isotropic density field from a single periodic simulation, by applying a set of weightings to the density field, and by measuring the scatter in power spectra between different weightings. We recommend a specific set of 52 weightings containing only combinations of fundamental modes, constructed to yield a minimum variance estimate of the covariance of power. Numerical tests reveal that at nonlinear scales the variance of power estimated by the weightings method substantially exceeds that estimated from a simple ensemble method. We argue that the discrepancy is caused by beat-coupling, in which products of closely spaced Fourier modes couple by nonlinear gravitational growth to the beat mode between them. Beat-coupling appears whenever nonlinear power is measured from Fourier modes with a finite spread of wavevector, and is therefore present in the weightings method but not the ensemble method. Beat-coupling inevitably affects real galaxy surveys, whose Fourier modes have finite width. Surprisingly, the beat-coupling contribution dominates the covariance of power at nonlinear scales, so that, counter-intuitively, it is expected that the covariance of nonlinear power in galaxy surveys is dominated not by small scale structure, but rather by beat-coupling to the largest scales of the survey.
We seek to improve estimates of the power spectrum covariance matrix from a limited number of simulations by employing a novel statistical technique known as shrinkage estimation. The shrinkage technique optimally combines an empirical estimate of th
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scale
We compute the effects induced by the use of small CMB maps on the measurement of the $cl{l}$ coefficients of the angular power spectrum and show that small systematic effects have to be taken into account. We also compute numerically the cosmic vari
The large-scale structure of the Universe should soon be measured at high redshift during the Epoch of Reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluct
Primordial gravitational waves generated during inflation lead to the B-mode polarization in the cosmic microwave background and a stochastic gravitational wave background in the Universe. We will explore the current constraint on the tilt of primord