ﻻ يوجد ملخص باللغة العربية
We seek to improve estimates of the power spectrum covariance matrix from a limited number of simulations by employing a novel statistical technique known as shrinkage estimation. The shrinkage technique optimally combines an empirical estimate of the covariance with a model (the target) to minimize the total mean squared error compared to the true underlying covariance. We test this technique on N-body simulations and evaluate its performance by estimating cosmological parameters. Using a simple diagonal target, we show that the shrinkage estimator significantly outperforms both the empirical covariance and the target individually when using a small number of simulations. We find that reducing noise in the covariance estimate is essential for properly estimating the values of cosmological parameters as well as their confidence intervals. We extend our method to the jackknife covariance estimator and again find significant improvement, though simulations give better results. Even for thousands of simulations we still find evidence that our method improves estimation of the covariance matrix. Because our method is simple, requires negligible additional numerical effort, and produces superior results, we always advocate shrinkage estimation for the covariance of the power spectrum and other large-scale structure measurements when purely theoretical modeling of the covariance is insufficient.
We show how to estimate the covariance of the power spectrum of a statistically homogeneous and isotropic density field from a single periodic simulation, by applying a set of weightings to the density field, and by measuring the scatter in power spe
This paper considers the regularized estimation of covariance matrices (CM) of high-dimensional (compound) Gaussian data for minimum variance distortionless response (MVDR) beamforming. Linear shrinkage is applied to improve the accuracy and conditio
We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scale
Portfolio managers faced with limited sample sizes must use factor models to estimate the covariance matrix of a high-dimensional returns vector. For the simplest one-factor market model, success rests on the quality of the estimated leading eigenvec
Consider estimating the n by p matrix of means of an n by p matrix of independent normally distributed observations with constant variance, where the performance of an estimator is judged using a p by p matrix quadratic error loss function. A matrix