ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Profiles in the Cores of Cooling Flow Clusters of Galaxies

114   0   0.0 ( 0 )
 نشر من قبل Megan Donahue
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray properties of a relaxed cluster of galaxies are determined primarily by its gravitational potential well and the entropy distribution of its intracluster gas. That entropy distribution reflects both the accretion history of the cluster and the feedback processes which limit the condensation of intracluster gas. Here we present Chandra observations of the core entropy profiles of nine classic cooling-flow clusters that appear relaxed and contain intracluster gas with a cooling time less than a Hubble time. We show that those entropy profiles are remarkably similar, despite the fact that the clusters range over a factor of three in temperature. They typically have an entropy level of ~ 130 keV cm^2 at 100 kpc that declines to a plateau ~10 keV cm^2 at lesssim 10 kpc. Between these radii, the entropy profiles are propto r^alpha with alpha ~ 1.0 - 1.3. The non-zero central entropy levels in these clusters correspond to a cooling time ~10^8 yr, suggesting that episodic heating on this timescale maintains the central entropy profile in a quasi-steady state.

قيم البحث

اقرأ أيضاً

We investigate temperature and entropy profiles of 13 nearby cooling flow clusters observed with the EPIC cameras of XMM-Newton. When normalized and scaled by the virial radius the temperature profiles turn out to be remarkably similar. At large radi i the temperature profiles show a clear decline starting from a break radius at ~ 0.1 r_vir. The temperature decreases by ~30 % between 0.1 r_vir and 0.5 r_vir. As expected for systems where non-gravitational processes are of great importance, the scale length characterizing the central temperature drop is not found to be proportional to the virial radius of the system. The entropy of the plasma increases monotonically moving outwards almost proportional to the radius and the central entropy level is tightly correlated with the core radius of the X-ray emission. The dispersion in the entropy profiles is smaller if the empirical relation S propto T^{0.65} is used instead of the standard self-similar relation S propto T and, as expected for cooling flow clusters, no entropy cores are observed.
We emphasise the importance of the gas entropy in studying the evolution of cluster gas evolving under the influence of radiative cooling. On this basis, we develop an analytical model for this evolution. We then show that the assumptions needed for such a model are consistent with a numerical solution of the same equations. We postulate that the passive cooling phase ends when the central gas temperature falls to very low values. It follows a phase during which an unspecified mechanism heats the cluster gas. We show that in such a scenario the small number of clusters containing gas with temperatures below about 1 keV is simply a consequence of the radiative cooling.
442 - F. E. Bauer 2005
We present a Chandra study of 38 X-ray luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at z~0.15-0.4. We find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially-resolved spectral analyses, cool cores appear to still be common at these redshifts. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling [t(cool)<10 Gyr], while in the central bin at least 34 per cent demonstrate signs of strong cooling [t(cool)<2 Gyr]. These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, suggesting little evolution in cluster cores since z~0.4 and that heating and cooling mechanisms may already have stabilised by this epoch. Comparing the central cooling times to central Halpha emission in BCS clusters, we find a strong correspondence between the detection of Halpha and central cooling time. (Abridged)
The dust destruction timescales in the cores of clusters of galaxies are relatively short given their high central gas densities. However, substantial mid-infrared and sub-mm emission has been detected in many brightest cluster galaxies. In this lett er we present Herschel PACS and SPIRE photometry of the brightest cluster galaxy in three strong cooling flow clusters, A1068, A2597 and Zw3146. This photometry indicates that a substantial mass of cold dust is present (>3 x 10^7 Mo) at temperatures significantly lower (20-28K) than previously thought based on limited MIR and/or sub-mm results. The mass and temperature of the dust appear to match those of the cold gas traced by CO with a gas-to-dust ratio of 80-120.
60 - Jean A. Eilek 2003
A currently active radio galaxy sits at the center of almost every strong cooling core. What effect does it have on the cooling core? Could its effect be strong enough to offset the radiative cooling which should be occuring in these cores? In order to answer these questions we need to know how much energy the radio jet carries to the cooling core; but we have no way to measure the jet power directly. We therefore need to understand how the radio source evolves with time, and how it radiates, in order to use the data to determine the jet power. When some simple models are compared to the data, we learn that cluster-center radio galaxies probably are energetically important -- but not necessarily dominant -- in cooling cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا