ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel photometry of brightest cluster galaxies in cooling flow clusters

113   0   0.0 ( 0 )
 نشر من قبل Alastair Edge
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust destruction timescales in the cores of clusters of galaxies are relatively short given their high central gas densities. However, substantial mid-infrared and sub-mm emission has been detected in many brightest cluster galaxies. In this letter we present Herschel PACS and SPIRE photometry of the brightest cluster galaxy in three strong cooling flow clusters, A1068, A2597 and Zw3146. This photometry indicates that a substantial mass of cold dust is present (>3 x 10^7 Mo) at temperatures significantly lower (20-28K) than previously thought based on limited MIR and/or sub-mm results. The mass and temperature of the dust appear to match those of the cold gas traced by CO with a gas-to-dust ratio of 80-120.



قيم البحث

اقرأ أيضاً

We examine the alignment between Brightest Cluster Galaxies (BCGs) and their host clusters in a sample of 7031 clusters with 0.08<z<0.44 found using a matched-filter algorithm and an independent sample of 5744 clusters with 0.1<z<0.3 selected with th e maxBCG algorithm, both extracted from the Sloan Digital Sky Survey Data Release 6 imaging data. We confirm that BCGs are preferentially aligned with the clusters major axis; clusters with dominant BCGs (>0.65 mag brighter than the mean of the second and third ranked galaxies) show stronger alignment than do clusters with less dominant BCGs at the 4.4 sigma level. Rich clusters show a stronger alignment than do poor clusters at the 2.3 sigma level. Low redshift clusters (z<0.26) show more alignment than do high redshift (z>0.26) clusters, with a difference significant at the 3.0 sigma level. Our results do not depend on the algorithm used to select the cluster sample, suggesting that they are not biased by systematics of either algorithm. The correlation between BCG dominance and cluster alignment may be a consequence of the hierarchical merging process which forms the cluster. The observed redshift evolution may follow from secondary infall at late redshifts.
122 - T.D. Rawle 2012
We present far-infrared (FIR) analysis of 68 Brightest Cluster Galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500um), we calculate the obscured star formation rate (SFR). 22(+6.2,-5.3)% of the BCGs are detected in the far-infrared, with SFR= 1-150 M_sun/yr. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Ha emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2x10^11 L_sun), only a small (<0.4 mag) reddening correction is required for SFR(Ha) to agree with SFR_FIR. The relatively low Ha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate form normal stellar mass loss.
There is a strong spatial correlation between brightest cluster galaxies (BCGs) and the peak density and cooling rate of the intra-cluster medium (ICM). In this paper we combine integral field spectroscopy, CO observations and X-ray data to study thr ee exceptional clusters (Abell 1991, Abell 3444 and Ophiuchus) where there is a physical and dynamical offset between the BCG and the cooling peak to investigate the connection between the cooling of the intracluster medium, the cold gas being deposited and the central galaxy. We find the majority of the optical line emission is spatially coincident with the peak in the soft X-rays. In the case of A1991 we make separate detections of CO(2-1) emission on the BCG and on the peak of the soft X-ray emission suggesting that cooling continues to occur in the core despite being offset from the BCG. We conclude that there is a causal link between the lowest temperature (< 2 keV) ICM gas and the molecular gas(~ 30K). This link is only apparent in systems where a transitory event has decoupled the BCG from the soft X-ray peak. We discuss the prospects for identifying more examples of this rare configuration.
We present measurements of 5-25 {mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of 9 cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telesco pe. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally-excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H2 rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as somewhat higher ratios of 70 {mu}m / 24 {mu}m luminosities. Our analysis suggests that while star formation processes dominate the heating of the dust and PAHs, a heating process consistent with suprathermal electron heating from the hot gas, distinct from star formation, is heating the molecular gas and contributing to the heating of the ionized gas in the galaxies. The survival of PAHs and dust suggests that dusty gas is somehow shielded from significant interaction with the X-ray gas.
137 - H. Ebeling , A.C. Edge , A. Mantz 2010
We present a statistically complete sample of very X-ray luminous galaxy clusters detected in the MAssive Cluster Survey (MACS). This second MACS release comprises all 34 MACS clusters with nominal X-ray fluxes in excess of 2x10^(-12) erg/s/cm^2 (0.1 -2.4 keV) in the ROSAT Bright Source Catalogue; two thirds of them are new discoveries. Extending over the redshift range from 0.3 to 0.5, this subset complements the complete sample of the 12 most distant MACS clusters (z>0.5) published in 2007 and further exemplifies the efficacy of X-ray selection for the compilation of samples of intrinsically massive galaxy clusters. Extensive follow-up observations with Chandra/ACIS led to three additional MACS cluster candidates being eliminated as (predominantly) X-ray point sources. For another four clusters --- which, however, remain in our sample of 34 --- the point-source contamination was found to be about 50%. The median X-ray luminosity of 1.3x10^45 erg/s (0.1-2.4 keV, Chandra, within r_500) of the clusters in this subsample demonstrates the power of the MACS survey strategy to find the most extreme and rarest clusters out to significant redshift. A comparison of the optical and X-ray data for all clusters in this release finds a wide range of morphologies with no obvious bias in favour of either relaxed or merging systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا