ﻻ يوجد ملخص باللغة العربية
We study the minimal cooling scenario of superfluid neutron stars with nucleon cores, where the direct Urca process is forbidden and the enhanced cooling is produced by the neutrino emission due to Cooper pairing of neutrons. Extending our previous consideration (Gusakov et al. 2004a), we include the effects of accreted envelopes of light elements. We employ phenomenological density-dependent critical temperatures T_{cp}(rho) and T_{cnt}(rho) of singlet-state proton and triplet-state neutron pairing in a stellar core, as well as the critical temperature T_{cns}(rho) of singlet-state neutron pairing in a stellar crust. We show that the presence of accreted envelopes simplifies the interpretation of observations of thermal radiation from isolated neutron stars in the scenario of Gusakov et al. (2004a) and widens the class of models for nucleon superfluidity in neutron star interiors consistent with the observations.
We study the thermal structure of neutron stars with magnetized envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing magnetic fields, as well as equation of state and radiative opacities for partially
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B > 10^{14} G) non-accreted and accreted outermost envelopes composed o
The minimal cooling paradigm for neutron star cooling assumes that enhanced cooling due to neutrino emission from any direct Urca process, due either to nucleons or to exotica such as hyperons, Bose condensates, or deconfined quarks, does not occur.
We analyze cooling of neutron stars, assuming the presence of localized protons in the densest region of their cores. Choosing a single threshold density for proton localization and adjusting neutron star mass, we reproduce the observational data on
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^13 G. A realistic cooling model that includes the presence of high magnetic fields should be reconsidered. Aims: We investigate the effects of anisotropic tem