ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling neutron stars with localized protons

212   0   0.0 ( 0 )
 نشر من قبل Pawel Haensel
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze cooling of neutron stars, assuming the presence of localized protons in the densest region of their cores. Choosing a single threshold density for proton localization and adjusting neutron star mass, we reproduce the observational data on effective surface temperatures of Vela and PSR 0656+14, with or without an accreted hydrogen envelope. However, the presence of a tiny hydrogen envelope is mandatory, in this model, for reproducing the Geminga data.

قيم البحث

اقرأ أيضاً

71 - A.D. Kaminker 2006
We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable the rmal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located in an outer magnetars crust, at densities rho < 5e11 g/cm^3, and should have the heat intensity of the order of 1e20 erg/s/cm^3. Otherwise the heat energy is mainly emitted by neutrinos and cannot warm up the surface.
Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of thi s theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.
181 - A.D. Kaminker 2005
We study the minimal cooling scenario of superfluid neutron stars with nucleon cores, where the direct Urca process is forbidden and the enhanced cooling is produced by the neutrino emission due to Cooper pairing of neutrons. Extending our previous c onsideration (Gusakov et al. 2004a), we include the effects of accreted envelopes of light elements. We employ phenomenological density-dependent critical temperatures T_{cp}(rho) and T_{cnt}(rho) of singlet-state proton and triplet-state neutron pairing in a stellar core, as well as the critical temperature T_{cns}(rho) of singlet-state neutron pairing in a stellar crust. We show that the presence of accreted envelopes simplifies the interpretation of observations of thermal radiation from isolated neutron stars in the scenario of Gusakov et al. (2004a) and widens the class of models for nucleon superfluidity in neutron star interiors consistent with the observations.
308 - Dany Page , 2007
We present models of temperature distribution in the crust of a neutron star in the presence of a strong toroidal component superposed to the poloidal component of the magnetic field. The presence of such a toroidal field hinders heat flow toward the surface in a large part of the crust. As a result, the neutron star surface presents two warm regions surrounded by extended cold regions and has a thermal luminosity much lower than in the case the magnetic field is purely poloidal. We apply these models to calculate the thermal evolution of such neutron stars and show that the lowered photon luminosity naturally extends their life-time as detectable thermal X-ray sources.
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^13 G. A realistic cooling model that includes the presence of high magnetic fields should be reconsidered. Aims: We investigate the effects of anisotropic tem perature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a large effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Both magnetic fields and Joule heating play a key role in keeping magnetars warm for a long time. Moreover, this effect is important for intermediate field neutron stars and should be considered in radio-quiet isolated neutron stars or high magnetic field radio-pulsars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا