ﻻ يوجد ملخص باللغة العربية
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission, including the Fe K-alpha line complex, characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.
The nature of the X-ray source RX J1914+24 has been the subject of much debate. It shows a prominent period of 569 sec in X-rays and the optical/infra-red: in most models this has been interpreted as the binary orbital period. We present our analysis
Radioisotopes are natural clocks which can be used to estimate the age of the solar system. They also influence the shape of supernova light curves. In addition, the diffuse emission at 1.8 MeV from the decay of 26Al may provide a measure of the pres
The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before
The collapsar model for long gamma-ray bursts requires a rapidly rotating Wolf-Rayet star as progenitor. We test the idea of producing rapidly rotating Wolf-Rayet stars in massive close binaries through mass accretion and consecutive quasi-chemically
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by