ﻻ يوجد ملخص باللغة العربية
Gravity modes are the best probes to study the solar radiative zone dynamics, especially in the nuclear core. These modes remain difficult to observe, but they are essential ingredients for progressing on the evolution of the Sun-Earth relationship at the level of centuries. Today, the knowledge of the internal dynamics comes from acoustic modes and concerns mainly the external 2% of the solar mass. Nevertheless, the flat rotation profile of the radiative zone compels physics beyond the standard framework. I summarize different attempts to look for gravity modes and the results obtained after 8 years of observation with the GOLF/SoHO instrument. Some gravity mode candidates (at 1mm/s level) have appeared with more than 98% confidence level as quadruplets or quintuplets. These patterns, if confirmed as gravity modes, may reveal very exciting physics of the solar core. Getting information on rotation and magnetic field in the solar core are real keys to simulate a complete dynamical solar picture. The understanding of the solar dynamics, the precise energetic balance and its temporal evolution necessitate more observations of the radiative zone which constitutes 98% of the Sun by mass. Our expertise in Doppler velocity measurements allows a step further and a new instrumental concept to reach velocities as low as 0.1 mm/s. A prototype will join the Tenerife site in 2006 and a space version is proposed to CNES and ESA as a microsatellite or part of a payload at the L1 Lagrange point.
The increasing precision of spacecraft radiometric tracking data experienced in the last number of years, coupled with the huge amount of data collected and the long baselines of the available datasets, has made the direct observation of Solar System
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this
Reactor neutrinos have been an important tool for both discovery and precision measurement in the history of neutrino studies. Since the first generation of reactor neutrino experiments in the 1950s, the detector technology has been greatly advanced.
Anomaly mining is an important problem that finds numerous applications in various real world domains such as environmental monitoring, cybersecurity, finance, healthcare and medicine, to name a few. In this article, I focus on two areas, (1) point-c
In this talk I review the history of models of strong decays, from the original model through applications to charmonium, light and charmed mesons, glueballs and hybrids. Our current rather limited understanding of the QCD mechanism of strong decays