ﻻ يوجد ملخص باللغة العربية
We have detected the four 18cm OH lines from the $z sim 0.765$ gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time. We compare the HI and OH main line absorption redshifts of the different components in the $z sim 0.765$ absorber and the $z sim 0.685$ lens toward B0218+357 to place stringent constraints on changes in $F equiv g_p [alpha^2/mu]^{1.57}$. We obtain $[Delta F/F] = (0.44 pm 0.36^{rm stat} pm 1.0^{rm syst}) times 10^{-5}$, consistent with no evolution over the redshift range $0 < z < 0.7$. The measurements have a $2 sigma$ sensitivity of $[Delta alpha/alpha] < 6.7 times 10^{-6}$ or $[Delta mu/mu] < 1.4 times 10^{-5}$ to fractional changes in $alpha$ and $mu$ over a period of $sim 6.5$ Gyr, half the age of the Universe. These are among the most sensitive current constraints on changes in $mu$.
The formation of a strange or hybrid star from a neutron star progenitor is believed to occur when the central stellar density exceeds a critical value. If the transition from hadron to quark matter is of first order, the event has to release a huge
Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic micro
We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only 4 of the 77 OHMs have exist
We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targetting the redshifted conjugate satellite OH 18 cm lines at $z approx 0.247$ towards PKS1413+135. The satellite OH 1720 and 1612 MHz lines ar
Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or gravitational waves, such as laser interferometers, optical cavities and resonant-mass detectors, are directly linked to measuring changes in mate