ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on changes in fundamental constants from a cosmologically distant OH absorber/emitter

43   0   0.0 ( 0 )
 نشر من قبل Nissim Kanekar
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Kanekar




اسأل ChatGPT حول البحث

We have detected the four 18cm OH lines from the $z sim 0.765$ gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time. We compare the HI and OH main line absorption redshifts of the different components in the $z sim 0.765$ absorber and the $z sim 0.685$ lens toward B0218+357 to place stringent constraints on changes in $F equiv g_p [alpha^2/mu]^{1.57}$. We obtain $[Delta F/F] = (0.44 pm 0.36^{rm stat} pm 1.0^{rm syst}) times 10^{-5}$, consistent with no evolution over the redshift range $0 < z < 0.7$. The measurements have a $2 sigma$ sensitivity of $[Delta alpha/alpha] < 6.7 times 10^{-6}$ or $[Delta mu/mu] < 1.4 times 10^{-5}$ to fractional changes in $alpha$ and $mu$ over a period of $sim 6.5$ Gyr, half the age of the Universe. These are among the most sensitive current constraints on changes in $mu$.



قيم البحث

اقرأ أيضاً

134 - C. Bambi , A. Drago 2008
The formation of a strange or hybrid star from a neutron star progenitor is believed to occur when the central stellar density exceeds a critical value. If the transition from hadron to quark matter is of first order, the event has to release a huge amount of energy in a very short time and we would be able to observe the phenomenon even if it is at cosmological distance far from us; most likely, such violent quark deconfinement would be associated with at least a fraction of the observed gamma ray bursts. If we allow for temporal variations of fundamental constants like $Lambda_{QCD}$ or $G_N$, we can expect that neutron stars with an initial central density just below the critical value can enter into the region where strange or hybrid stars are the true ground state. From the observed rate of long gamma ray bursts, we are able to deduce the constraint $dot{G}_N/G_N lesssim 10^{-17} {rm yr^{-1}}$, which is about 5 orders of magnitude more stringent than the strongest previous bounds on a possible increasing $G_N$.
Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic micro wave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift $zsim 10^3$ by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, $H_0$. In addition to $alpha$, we can set a constraint on the variation of the mass of the electron, $m_{rm e}$, and on the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to ${Deltaalpha}/{alpha}= (3.6pm 3.7)times10^{-3}$ and ${Delta m_{rm e}}/{m_{rm e}}= (4 pm 11)times10^{-3}$ at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine structure constant. The relative amplitude of a dipolar spatial variation of $alpha$ (corresponding to a gradient across our Hubble volume) is constrained to be $deltaalpha/alpha=(-2.4pm 3.7)times 10^{-2}$.
We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only 4 of the 77 OHMs have exist ing satellite line observations in the literature. In 5 sources, satellite line emission is detected, with 3 of the 5 sources re-detections of previously published sources. The 2 sources with new detections of satellite line emission are IRAS F10173+0829, which was detected at 1720 MHz, and IRAS F15107+0724, for which both the 1612 MHz and 1720 MHz lines were detected. In IRAS F15107+0724, the satellite lines are partially conjugate, as 1720 MHz absorption and 1612 MHz emission have the same structure at some velocities within the source, along with additional broader 1612 MHz emission. This is the first observed example of conjugate satellite lines in an OHM. In the remaining sources, no satellite line emission is observed. The detections and upper limits are generally consistent with models of OHM emission in which all of the 18 cm OH lines have the same excitation temperature. There is no evidence for a significant population of strong satellite line emitters among OHMs.
We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy, targetting the redshifted conjugate satellite OH 18 cm lines at $z approx 0.247$ towards PKS1413+135. The satellite OH 1720 and 1612 MHz lines ar e respectively in emission and absorption, with exactly the same line shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612 MHz line rest frequencies have different dependences on the fine structure constant $alpha$ and the proton-electron mass ratio $mu$, a comparison between their measured redshifts allows one to probe changes in $alpha$ and $mu$ with cosmological time. In the case of conjugate satellite OH 18 cm lines, the predicted perfect cancellation of the sum of the line optical depths provides a strong test for the presence of systematic effects that might limit their use in probing fundamental constant evolution. A non-parametric analysis of our new Arecibo data yields $left[Delta X/X right] = (+0.97 pm 1.52) times 10^{-6}$, where $X equiv mu alpha^2$. Combining this with our earlier results from the Arecibo Telescope and the Westerbork Synthesis Radio Telescope, we obtain $left[Delta X/X right] = (-1.0 pm 1.3) times 10^{-6}$, consistent with no changes in the quantity $mu alpha^2$ over the last 2.9~Gyr. This is the most stringent present constraint on fractional changes in $mu alpha^2$ from astronomical spectroscopy, and with no evidence for systematic effects.
Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or gravitational waves, such as laser interferometers, optical cavities and resonant-mass detectors, are directly linked to measuring changes in mate rial size. Here we present calculated and experiment-derived estimates for both $alpha$- and $mu$-dependence of lattice constants and bond lengths of selected solid-state materials and diatomic molecules that are needed for interpretation of such experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا