ﻻ يوجد ملخص باللغة العربية
A magnetic flux tube may be considered both as a separate body and as a confined field. As a field, it is affected both by differential rotation ($Omega$-effect) and cyclonic convection ($alpha$-effect). As a body, the tube experiences not only a buoyant force, but also a dynamic pressure due to downflows above the tube. These two competing dynamic effects are incorporated into the $alpha$-$Omega$ dynamo equations through the total magnetic turbulent diffusivity, leading to a flux tube dynamo operating in the convection zone. We analyze and solve the extended dynamo equations in the linear approximation by adopting the observed solar internal rotation and assuming a downflow effect derived from numerical simulations of solar convection zone. The model reproduces: the 22-year cycle period; the extended butterfly diagram with the confinement of strong activity to low heliographic latitudes $|Phi|le 35^circ$; the evidence that at low latitudes the radial field is in an approximately $pi$ phase lag compared to the toroidal field at the same latitude; the evidence that the poleward branch is in a $pi/2$ phase lag with respect to the equatorward branch; and the evidence that most of the magnetic flux is present in an intermittent form, concentrated into strong flux tubes.
The scalar potential, time component vector potential and flux tube quark confinements are studied in this paper. We find that the predictions of scalar confinement and time component vector confinement are in considerable conflict with measured valu
The variable magnetic field of the solar photosphere exhibits periodic reversals as a result of dynamo activity occurring within the solar interior. We decompose the surface field as observed by both the Wilcox Solar Observatory and the Michelson Dop
We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope
A magnetic flux tube may be considered both as a separate body and as a confined field. As a field, it is affected both by the cyclonic convection ($alpha$-effect) and differential rotation ($Omega$-effect). As a body, the tube experiences not only a
Solar activity cycle varies in amplitude. The last Cycle 24 is the weakest in the past century. Suns activity dominates Earths space environment. The frequency and intensity of the Suns activity are accordant with the solar cycle. Hence there are pra