ﻻ يوجد ملخص باللغة العربية
The scalar potential, time component vector potential and flux tube quark confinements are studied in this paper. We find that the predictions of scalar confinement and time component vector confinement are in considerable conflict with measured values while the flux-tube confinement works well to explain the experimental data. We also study the relativistic flux tube model. From the comparison of the exact numerical solution with the analytic approximation solution for heavy-light mesons, we find that the solutions are much more in agreement with each other for higher excited states since the deep radial limit is better satisfied.
We study the stress-tensor distribution around the flux tube in static quark and anti-quark systems based on the momentum conservation and the Abelian-Higgs (AH) model. We first investigate constraints on the stress-tensor distribution from the momen
We consider the phase transition in the hot dual long-distances Yang-Mills theory at finite temperature $T$. This phase transition is associated with a change of symmetry. The dual model is formulated in terms of two-point Wightman functions with equ
We study the phase diagram of QCD with the help of order parameters for chiral symmetry breaking and quark confinement. We also introduce a new order parameter for the confinement phase transition, which is related to the quark density. It is easily
The treatment of confining interactions in non-relativistic three-quark systems is revised. Usually in the Faddeev equations the Faddeev components are coupled by the total potential. In the new treatment the Faddeev components are coupled only by th
We perform $SU(2)$ Yang-Mills lattice simulation of the electric field distribution in the Coulomb gauge for different values of $beta$ to further investigate the nature of the Coulomb flux tube.