ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of Outlying, High-Velocity Oxygen-Rich Ejecta in Cassiopeia A

99   0   0.0 ( 0 )
 نشر من قبل Robert Fesen
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. A. Fesen




اسأل ChatGPT حول البحث

Hubble Space Telescope images of the young Galactic supernova remnant Cassiopeia A reveal a far larger population of outlying, high-velocity knots of ejecta with a broader range of chemical properties than previously suspected. We identify three main classes of outer ejecta: 1) Knots dominated by [N II] 6548,6583 emission; 2) Knots dominated by oxygen emission lines especially [O II] 7319,7330; and 3) Knots with emission line strengths similar to the [S II] strong FMK ejecta commonly seen in the main emission shell. The discovery of a significant population of O-rich ejecta situated in between the suspected N-rich outer photospheric layer and S-rich FMK-like ejecta suggests that the Cas A progenitors chemical layers were not completely disrupted by the supernova explosion outside of the remnants NE and SW high velocity `jet regions. In addition, we find the majority of O-rich outer ejecta at projected locations out beyond (v = 6500 - 9000 km/s) the remnants fastest moving Fe-rich X-ray emission material (6000 km/s) seen in Chandra and XMM data along the eastern limb. This suggests that penetration of Fe-rich material up through the S and Si-rich mantle did not extend past the progenitors N or O-rich outer layers for at least this section of the remnant.

قيم البحث

اقرأ أيضاً

We present a three-dimensional kinematic reconstruction of the optically-emitting, oxygen-rich ejecta of supernova remnant N132D in the Large Magellanic Cloud. Data were obtained with the 6.5 m Magellan telescope in combination with the IMACS+GISMO i nstrument and survey [O III] $lambdalambda$4959,5007 line emission in a ${sim}$3$^{prime}~times$ 3$^{prime}$ region centered on N132D. The spatial and spectral resolution of our data enable detailed examination of the optical ejecta structure. The majority of N132Ds optically bright oxygen ejecta are arranged in a torus-like geometry tilted approximately 28$^{circ}$ with respect to the plane of the sky. The torus has a radius of 4.4 pc ($D_{rm LMC}$/50 kpc), exhibits a blue-shifted radial velocity asymmetry of $-3000$ to $+2300$ km s$^{-1}$, and has a conspicuous break in its circumference. Assuming homologous expansion from the geometric center of O-rich filaments, the average expansion velocity of 1745 km s$^{-1}$ translates to an age since explosion of 2450 $pm$ 195 yr. A faint, spatially-separated runaway knot (RK) with total space velocity of 3650 km s$^{-1}$ is nearly perpendicular to the torus plane and coincident with X-ray emission that is substantially enhanced in Si relative to the LMC and N132Ds bulk ejecta. These kinematic and chemical signatures suggest that the RK may have had its origin deep within the progenitor star. Overall, the main shell morphology and high-velocity, Si-enriched components of N132D have remarkable similarity with that of Cassiopeia A, which was the result of a Type IIb supernova explosion. Our results underscore the need for further observations and simulations that can robustly reconcile whether the observed morphology is dominated by explosion dynamics or shaped by interaction with the environment.
125 - S. Katsuda 2008
We report on the discovery of fast-moving X-ray--emitting ejecta knots in the Galactic Oxygen-rich supernova remnant Puppis A from XMM-Newton observations. We find an X-ray knotty feature positionally coincident with an O-rich fast-moving optical fil ament with blue-shifted line emission located in the northeast of Puppis A. We extract spectra from northern and southern regions of the feature. Applying a one-component non-equilibrium ionization model for the two spectra, we find high metal abundances relative to the solar values in both spectra. This fact clearly shows that the feature originates from metal-rich ejecta. In addition, we find that line emission in the two regions is blue-shifted. The Doppler velocities derived in the two regions are different with each other, suggesting that the knotty feature consists of two knots that are close to each other along the line of sight. Since fast-moving O-rich optical knots/filaments are believed to be recoiled metal-rich ejecta, expelled to the opposite direction against the high-velocity central compact object, we propose that the ejecta knots disclosed here are also part of the recoiled material.
We present a 3-dimensional analysis of the supernova remnant Cassiopeia A using high resolution spectra from the Spitzer Space Telescope. We observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that t he reverse shock of the remnant is spherical to within 7%, although the center of this sphere is offset from the geometric center of the remnant by 810 km/s. We determine that the velocity width of the nucleosynthetic layers is approximately 1000 km/s over 4000 square arcsecond regions, although the velocity width of a layer along any individual line of sight is <250 km/s. Si and O, which come from different nucleosynthetic layers in the progenitor star, are observed to be coincident in velocity space in some directions, but segregated by up to approximately 500 km/s in other directions. We compare these observations of the nucleosynthetic layers to predictions from supernova explosion models in an attempt to constrain such models. Finally, we observe small-scale, corrugated velocity structures that are likely caused during the supernova explosion itself, rather than hundreds of years later by dynamical instabilities at the remnants reverse shock.
We present the analysis of 21 bright X-ray knots in the Cassiopeia A supernova remnant from observations spanning 10 yr. We performed a comprehensive set of measurements to reveal the kinematic and thermal state of the plasma in each knot, using a co mbined analysis of two high energy resolution High Energy Transmission Grating (HETG) and four medium energy resolution Advanced CCD Imaging Spectrometer (ACIS) sets of spectra. The ACIS electron temperature estimates agree with the HETG-derived values for approximately half of the knots studied, yielding one of the first comparisons between high resolution temperature estimates and ACIS-derived temperatures. We did not observe the expected spectral evolutionpredicted from the ionization age and density estimates for each knotin all but three of the knots studied. The incompatibility of these measurements with our assumptions has led us to propose a dissociated ejecta model, with the metals unmixed inside the knots, which could place strong constraints on supernova mixing models.
We report here the first study of proper motions of fast filaments in the young, oxygen-rich supernova remnant G292.0+1.8, carried out using a series of [O III] 5007 A emission-line images taken over a period of more than 21 years. Images taken at se ven epochs from 1986 to 2008, all from telescopes at the Cerro Tololo Inter-American Observatory, show oxygen-emitting filaments, presumably ejecta fragments, throughout most of the remnant. We have measured the proper motions for 67 discrete filaments through two-dimensional correlations between images from different epochs. While the motions are small, mostly 20 to 100 milli-arcsec, they are nevertheless measurable through a robust technique of averaging measurements from many epoch pairs. The data are qualitatively consistent with a free-expansion model, and clearly show systematic motions outward from a point near the center of the radio/X-ray shell. Global fits using this model indicate an expansion center at R.A.(2000.0) = 11:24:34.4, Dec.(2000.0) = -59:15:51, and a kinematic age of 2990+-60 years. The young pulsar PSR J1124-5916 is located 46 arcsec southeast of the expansion center. Assuming that it was launched by the supernova, we expect the pulsar to be moving southeastward at 16 milli-arcsec, or a transverse velocity of 440 km/s. We find the fastest ejecta along an axis oriented roughly N-S in the plane of the sky, suggesting that a bipolar explosion produced G292.0+1.8, as appears to have been the case for Cas A.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا