ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleosynthetic Layers in the Shocked Ejecta of Cassiopeia A

50   0   0.0 ( 0 )
 نشر من قبل Lawrence Rudnick
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 3-dimensional analysis of the supernova remnant Cassiopeia A using high resolution spectra from the Spitzer Space Telescope. We observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the reverse shock of the remnant is spherical to within 7%, although the center of this sphere is offset from the geometric center of the remnant by 810 km/s. We determine that the velocity width of the nucleosynthetic layers is approximately 1000 km/s over 4000 square arcsecond regions, although the velocity width of a layer along any individual line of sight is <250 km/s. Si and O, which come from different nucleosynthetic layers in the progenitor star, are observed to be coincident in velocity space in some directions, but segregated by up to approximately 500 km/s in other directions. We compare these observations of the nucleosynthetic layers to predictions from supernova explosion models in an attempt to constrain such models. Finally, we observe small-scale, corrugated velocity structures that are likely caused during the supernova explosion itself, rather than hundreds of years later by dynamical instabilities at the remnants reverse shock.

قيم البحث

اقرأ أيضاً

Cas A is a Galactic supernova remnant whose supernova explosion is observed to be of Type IIb from spectroscopy of its light echo. Having its SN type known, observational constraints on the mass-loss history of Cas As progenitor can provide crucial i nformation on the final fate of massive stars. In this paper, we study X-ray characteristics of the shocked ambient gas in Cas A using the 1 Ms observation carried out with the Chandra X-Ray Observatory and try to constrain the mass-loss history of the progenitor star. We identify thermal emission from the shocked ambient gas along the outer boundary of the remnant. Comparison of measured radial variations of spectroscopic parameters of the shocked ambient gas to the self-similar solutions of Chevalier show that Cas A is expanding into a circumstellar wind rather than into a uniform medium. We estimate a wind density nH ~ 0.9 $pm$ 0.3 cm$^{-3}$ at the current outer radius of the remnant (~3 pc), which we interpret as a dense slow wind from a red supergiant (RSG) star. Our results suggest that the progenitor star of Cas A had an initial mass around 16 Msun, and its mass before the explosion was about 5 Msun, with uncertainties of several tens of percent. Furthermore, the results suggest that, among the mass lost from the progenitor star (~11 Msun), a significant amount (more than 6 Msun) could have been via its RSG wind.
We present the analysis of 21 bright X-ray knots in the Cassiopeia A supernova remnant from observations spanning 10 yr. We performed a comprehensive set of measurements to reveal the kinematic and thermal state of the plasma in each knot, using a co mbined analysis of two high energy resolution High Energy Transmission Grating (HETG) and four medium energy resolution Advanced CCD Imaging Spectrometer (ACIS) sets of spectra. The ACIS electron temperature estimates agree with the HETG-derived values for approximately half of the knots studied, yielding one of the first comparisons between high resolution temperature estimates and ACIS-derived temperatures. We did not observe the expected spectral evolutionpredicted from the ionization age and density estimates for each knotin all but three of the knots studied. The incompatibility of these measurements with our assumptions has led us to propose a dissociated ejecta model, with the metals unmixed inside the knots, which could place strong constraints on supernova mixing models.
We report the results of broadband (0.95--2.46 $mu$m) near-infrared spectroscopic observations of the Cassiopeia A supernova remnant. Using a clump-finding algorithm in two-dimensional dispersed images, we identify 63 knots from eight slit positions and derive their spectroscopic properties. All of the knots emit [Fe II] lines together with other ionic forbidden lines of heavy elements, and some of them also emit H and He lines. We identify 46 emission line features in total from the 63 knots and measure their fluxes and radial velocities. The results of our analyses of the emission line features based on principal component analysis show that the knots can be classified into three groups: (1) He-rich, (2) S-rich, and (3) Fe-rich knots. The He-rich knots have relatively small, $lesssim 200~{rm km~s}^{-1}$, line-of-sight speeds and radiate strong He I and [Fe II] lines resembling closely optical quasi-stationary flocculi of circumstellar medium, while the S-rich knots show strong lines from O-burning material with large radial velocities up to $sim 2000~{rm km~s}^{-1}$ indicating that they are supernova ejecta material known as fast-moving knots. The Fe-rich knots also have large radial velocities but show no lines from O-burning material. We discuss the origin of the Fe-rich knots and conclude that they are most likely pure Fe ejecta synthesized in the innermost region during the supernova explosion. The comparison of [Fe II] images with other waveband images shows that these dense Fe ejecta are mainly distributed along the southwestern shell just outside the unshocked $^{44}$Ti in the interior, supporting the presence of unshocked Fe associated with $^{44}$Ti.
98 - R. A. Fesen 2005
Hubble Space Telescope images of the young Galactic supernova remnant Cassiopeia A reveal a far larger population of outlying, high-velocity knots of ejecta with a broader range of chemical properties than previously suspected. We identify three main classes of outer ejecta: 1) Knots dominated by [N II] 6548,6583 emission; 2) Knots dominated by oxygen emission lines especially [O II] 7319,7330; and 3) Knots with emission line strengths similar to the [S II] strong FMK ejecta commonly seen in the main emission shell. The discovery of a significant population of O-rich ejecta situated in between the suspected N-rich outer photospheric layer and S-rich FMK-like ejecta suggests that the Cas A progenitors chemical layers were not completely disrupted by the supernova explosion outside of the remnants NE and SW high velocity `jet regions. In addition, we find the majority of O-rich outer ejecta at projected locations out beyond (v = 6500 - 9000 km/s) the remnants fastest moving Fe-rich X-ray emission material (6000 km/s) seen in Chandra and XMM data along the eastern limb. This suggests that penetration of Fe-rich material up through the S and Si-rich mantle did not extend past the progenitors N or O-rich outer layers for at least this section of the remnant.
Characterizing the ejecta in young supernova remnants is a requisite step towards a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its expl osion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9 arcseconds and 18.5 arcseconds resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 electrons per cubic centimeters and a total mass of 0.39 Solar masses with uncertainties of a factor of about 2. This is a significant improvement over the 100 electrons per cubic centimeter upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas As integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا