ﻻ يوجد ملخص باللغة العربية
We investigate the metallicity effect (measured by the original 22Ne content) on the detailed nucleosynthetic yields for 3D hydrodynamical simulations of the thermonuclear burning phase in SNe Ia. Calculations are based on post-processes of the ejecta, using passively advected tracer particles, as explained in details by Travaglio et al.(2004). The nuclear reaction network employed in computing the explosive nucleosynthesis contains 383 nuclear species. For this work we use the high resolution multi-point ignition (bubbles) model b30_3d_768 (Travaglio et al.2004 for the solar metallicity case), and we cover a metallicity range between 0.1xZ_sun up to 3xZ_sun. We find a linear dependence of the 56Ni mass ejected on the progenitors metallicity, with a variation in the 56Ni mass of ~25% in the metallicity range explored. Moreover, the largest variation in 56Ni occurs at metallicity greater than solar. Almost no variations are shown in the unburned material 12C and 16O. The largest metallicity effect is seen in the alpha-elements. Finally, implications for the observed scatter in the peak luminosities of SNe Ia are also discussed.
We present the results of nucleosynthesis calculations based on multidimensional (2D and 3D) hydrodynamical simulations of the thermonuclear burning phase in SNIa. The detailed nucleosynthetic yields of our explosion models are calculated by post-pro
We investigate explosive nuclear burning in core collapse supernovae by coupling a tracer particle method to one and two-dimensional Eulerian hydrodynamic calculations. Adopting the most recent experimental and theoretical nuclear data, we compute th
We explore SNIa as p-process sources in the framework of two-dimensional SNIa models using enhanced s-seed distributions as directly obtained from a sequence of thermal pulse instabilities. The SNIa WD precursor is assumed to have reached the Chandra
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier th
Type Ia supernovae are thought to be the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a close binary system. Their optical light curve is powered by thermalized gamma-rays produced by the radioactive decay of 56Ni, the mos