ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-rays from SNIa

118   0   0.0 ( 0 )
 نشر من قبل Jordi Isern
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Type Ia supernovae are thought to be the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a close binary system. Their optical light curve is powered by thermalized gamma-rays produced by the radioactive decay of 56Ni, the most abundant isotope present in the debris. The maximum and the shape of the light curve strongly depends on the total amount and distribution of this freshly synthesized isotope, as well as on the velocity and density distribution of the ejecta. Gamma-rays escaping the ejecta have the advantage of their lower interaction with the ejecta, the possibility to distinguish among isotopes and the relative simplicity of their transport modelling, and can be used as a diagnostic tool for studying the structure of the exploding star and the characteristics of the explosion, as it has been proved in the case of SN2014J.

قيم البحث

اقرأ أيضاً

Blazars are among the most variable objects in the universe. They feature energetic jets of plasma that launch from the cores of these active galactic nuclei (AGN), triggering activity from radio up to gamma-ray energies. Spatial localization of the region of their MeV/GeV emission is a key question in understanding the blazar phenomenon. The flat spectrum radio quasar (FSRQ) PKS 1502+106 has exhibited extreme and correlated, radio and high-energy activity that triggered intense monitoring by the Fermi-GST AGN Multi-frequency Monitoring Alliance (F-GAMMA) program and the Global Millimeter VLBI Array (GMVA) down to $lambda$3 mm (or 86 GHz), enabling the sharpest view to date towards this extreme object. Here, we report on preliminary results of our study of the gamma-ray loud blazar PKS 1502+106, combining VLBI and single dish data. We deduce the critical aspect angle towards the source to be $theta_{rm c} = 2.6^{circ}$, calculate the apparent and intrinsic opening angles and constrain the distance of the 86 GHz core from the base of the conical jet, directly from mm-VLBI but also through a single dish relative timing analysis. Finally, we conclude that gamma rays from PKS 1502+106 originate from a region between ~1-16 pc away from the base of the hypothesized conical jet, well beyond the bulk of broad-line region (BLR) material of the source.
In this paper, we explore the possibility of a linearly polarized gamma-ray signal from dark matter annihilations in the Galactic center. Considering neutral weakly interacting massive particles, a polarized gamma-ray signal can be realized by a two- component dark matter model of Majorana fermions with an anapole moment. We discuss the spin alignment of such dark matter fermions in the Galactic center and then estimate the intensity and the polarizability of the final-state electromagnetic radiation in the dark matter annihilations. For low-mass dark matter, the photon flux at sub-GeV energies may be polarized at a level detectable in current X-ray polarimeters. Depending on the mass ratio between the final-state fermion and DM, the degree of polarization at the mass threshold can reach $70%$ or even higher, providing us with a new tool for probing the nature of dark matter in future gamma-ray polarization experiments.
The on-going H.E.S.S. Galactic Plane Survey continues to reveal new sources of VHE gamma-rays. In particular, recent re-observations of the region around the shell-type supernova remnant (SNR) G318.2+0.1 have resulted in the discovery of statisticall y-significant very-high-energy (VHE) gamma-ray emission from an extended region. Although the source remains unidentified, archival observations of CO12 in the region provide an opportunity to investigate a potential SNR/molecular cloud interaction. The morphological properties of this newly-discovered VHE gamma-ray source HESSJ1457-593 are presented and discussed in light of the multi-wavelength data available.
103 - Roland Diehl , Mark Leising 2009
SPI on INTEGRAL has provided spectra and a map of the sky in the emission from annihilations of positrons in the interstellar medium of our Galaxy. From high-resolution spectra we learned that a warm, partially-ionized medium is the site where the ob served gamma-rays originate. The gamma-ray emission map shows a major puzzle for broader astrophysics topics, as it is dominated by a bright and extended apparently spherical emission region centered in the Galaxys center. Only recently has the disk of the Galaxy been detected with SPI. This may be regarded as confirmation of earlier expectations that positrons should arise predominantly from sources of nucleosynthesis distributed throughout the plane of the Galaxy, which produce proton-rich unstable isotopes. But there are other plausible sources of positrons, among them pulsars and accreting binaries such as microquasars. SPI results may be interpreted also as hints that these are more significant as positron sources on the Galactic scale than thought before, in the plane and therefore also in the bulge of the Galaxy. This is part of the attempt to understand the surprisingly-bright emission from the central region in the Galaxy, which otherwise also could be interpreted as a first rather direct detection of dark matter annihilations in the Galaxys gravitational well. INTEGRAL has a unique potential to shed light on the various aspects of positron astrophysics, through its capability for imaging spectroscopy.
110 - Z. L. Xu , K. K. Duan , Z. Q. Shen 2017
The DArk Matter Particle Explorer (DAMPE), also known as Wukong in China, launched on December 17, 2015, is a new high energy cosmic ray and {gamma}-ray satellite-borne observatory in space. One of the main scientific goals of DAMPE is to observe GeV -TeV high energy {gamma}-rays with accurate energy, angular, and time resolution, to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to {gamma}-rays, it is challenging to identify {gamma}-rays with sufficiently high efficiency minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify {gamma}-rays in DAMPE data based on Monte Carlo simulations, using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected {gamma}-ray events at $sim10$ GeV amounts to less than 1% of the selected sample. Finally, we use flight data to verify the effectiveness of the method by highlighting known {gamma}-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا