ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyman alpha emission from local starburst galaxies and high-z objects

70   0   0.0 ( 0 )
 نشر من قبل Matthew Hayes
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Ostlin




اسأل ChatGPT حول البحث

We review the history and the current status of the understanding of the processes that regulate Lyman alpha emission from star-forming galaxies. We present some of the most recent results of our study to image local starburst galaxies in the Lyman alpha emission line using the Advanced Camera for Surveys on the Hubble Space Telescope. Particular attention is dedicated to our study of the low-metallicity, dust-poor Blue Compact Galaxy ESO338-IG04. We discuss some of our local observational results with reference to the interpretation of results of high-redshift Lyman alpha surveys and recent simulations of the detection properties of high-z Lyman alpha emitting objects performed by our group.



قيم البحث

اقرأ أيضاً

We searched for star formation activity associated with high-z Damped Lyman-alpha systems (DLAs) with Subaru telescope. We used a set of narrow-band (NB) filters whose central wavelengths correspond to the redshifted Lyman-alpha emission lines of tar geted DLA absorbers at 3<z<4.5. We detected one apparent NB-excess object located 3.80 arcsec (~28kpc) away from the quasar SDSS J031036.84+005521.7. Follow-up spectroscopy revealed an asymmetric Lyman-alpha emission at z_em=3.115+/-0.003, which perfectly matches the sub-DLA trough at z_abs=3.1150 with logN(HI)/cm^-2=20.05. The Lyman-alpha luminosity is estimated to be L(LyA)=1.07x10^42 erg s^-1, which corresponds to a star formation rate of 0.97 M_odot yr^-1. Interestingly, the detected Lyman-alpha emission is spatially extended with a sharp peak. The large extent of the Lyman-alpha emission is remarkably one-sided toward the quasar line-of-sight, and is redshifted. The observed spatially asymmetric surface brightness profile can be qualitatively explained by a model of a DLA host galaxy, assuming a galactic outflow and a clumpy distribution of HI clouds in the circumgalactic medium. This large Lyman-alpha extension, which is similar to those found in Rauch et al. (2008), could be the result of complicated anisotropic radiative transfer through the surrounding neutral gas embedded in the DLA.
We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging , two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.
103 - Goran Ostlin 2009
We present reduced and calibrated high resolution Lyman-alpha (Lya) images for a sample of 6 local star forming galaxies. Targets were selected to represent a range in luminosity and metallicity and to include both known Lya emitters and non-emitters . Far ultraviolet imaging was carried out with the Solar Blind Channel of the ACS on HST in the F122M (Lya on-line) and F140LP (continuum) filters. The resulting Lya images are the product of careful modeling of both the stellar and nebular continua, facilitated by supporting HST imaging in Ha and 5 continuum bands, combined with Starburst99 evolutionary synthesis models, and prescriptions for dust extinction on the continuum. In all, the resulting morphologies in Lya, Ha, and UV-continuum are qualitatively very different and we show that the bulk of Lya emerges in a diffuse component resulting from resonant scattering events. Lya escape fractions, computed from integrated Ha luminosities and recombination theory, are found never to exceed 14%. Internal dust extinction is estimated in each pixel and used to correct Lya fluxes. However, the extinction corrections are far too small (factors from 2.6 to infinity) to reconcile the global Lya luminosities with recombination theory. Surprisingly, when comparing the global equivalent widths of Lya and Ha, the two quantities appear anti-correlated, which may be due to the evolution of mechanical feedback. This calls for caution in the interpretation of Lya observations. The images presented have a physical resolution 3 orders of magnitude better than attainable at high-z from the ground with current instrumentation and our images may therefore serve as useful templates for comparing with observations and modeling of primeval galaxy formation. We therefore provide the reduced Lya, Ha, and continuum images to the community.
Recent results have shown that a substantial fraction of high-redshift Lyman alpha galaxies contain considerable amounts of dust. This implies that Lyman alpha galaxies are not primordial, as has been thought in the past. However, this dust has not b een directly detected in emission; rather it has been inferred based on extinction estimates from rest-frame ultraviolet (UV) and optical observations. This can be tricky, as both dust and old stars redden galactic spectra at the wavelengths used to infer dust. Measuring dust emission directly from these galaxies is thus a more accurate way to estimate the total dust mass, giving us real physical information on the stellar populations and interstellar medium (ISM) enrichment. New generation instruments such as the Atacama Large Millimeter Array (ALMA) and Sub-Millimeter Array (SMA), should be able to detect dust emission from some of these galaxies in the sub-mm. Using measurements of the UV spectral slopes, we derive far-infrared flux predictions for of a sample of 23 z > 4 Lyman alpha galaxies. We find that in only a few hours, we can detect dust emission from 39 +/- 22% of our Lyman alpha galaxies. Comparing these results to those found from a sample of 21 Lyman break galaxies (LBGs), we find that LBGs are on average 60% more likely to be detected than Lyman alpha galaxies, implying that they are more dusty, and thus indicating an evolutionary difference between these objects. These observations will provide better constraints on dust in these galaxies than those derived from their UV and optical fluxes alone. Undeniable proof of dust in these galaxies could explain the larger than expected Lyman alpha equivalent widths seen in many Lyman alpha galaxies today.
We present new {it Hubble Space Telescope} images of high-velocity H-$alpha$ and Lyman-$alpha$ emission in the outer debris of SN~1987A. The H-$alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$alpha$ imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals ($-$7,500~$<$~$V_{obs}$~$<$~$-$2,800 km s$^{-1}$) and (1,000~$<$~$V_{obs}$~$<$~7,500 km s$^{-1}$), $dot{M_{H}}$ = 1.2~$times$~10$^{-3}$ M$_{odot}$ yr$^{-1}$. We also present the first Lyman-$alpha$ imaging of the whole remnant and new $Chandra$ X-ray observations. Comparing the spatial distribution of the Lyman-$alpha$ and X-ray emission, we observe that the majority of the high-velocity Lyman-$alpha$ emission originates interior to the equatorial ring. The observed Lyman-$alpha$/H-$alpha$ photon ratio, $langle$$R(Lalpha / Halpha)$$rangle$ $approx$~17, is significantly higher than the theoretically predicted ratio of $approx$ 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-$alpha$ emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-$alpha$ and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-$alpha$ production mechanism in SN 1987A at this phase in its evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا