ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping High-velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

86   0   0.0 ( 0 )
 نشر من قبل Kevin France
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new {it Hubble Space Telescope} images of high-velocity H-$alpha$ and Lyman-$alpha$ emission in the outer debris of SN~1987A. The H-$alpha$ images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H$alpha$ imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals ($-$7,500~$<$~$V_{obs}$~$<$~$-$2,800 km s$^{-1}$) and (1,000~$<$~$V_{obs}$~$<$~7,500 km s$^{-1}$), $dot{M_{H}}$ = 1.2~$times$~10$^{-3}$ M$_{odot}$ yr$^{-1}$. We also present the first Lyman-$alpha$ imaging of the whole remnant and new $Chandra$ X-ray observations. Comparing the spatial distribution of the Lyman-$alpha$ and X-ray emission, we observe that the majority of the high-velocity Lyman-$alpha$ emission originates interior to the equatorial ring. The observed Lyman-$alpha$/H-$alpha$ photon ratio, $langle$$R(Lalpha / Halpha)$$rangle$ $approx$~17, is significantly higher than the theoretically predicted ratio of $approx$ 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-$alpha$ emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-$alpha$ and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-$alpha$ production mechanism in SN 1987A at this phase in its evolution.

قيم البحث

اقرأ أيضاً

147 - Rupert A.C. Croft 2018
We investigate the large-scale structure of Lyman-alpha emission intensity in the Universe at redshifts z=2-3.5 using cross-correlation techniques. Our Lya emission samples are spectra of BOSS Luminous Red Galaxies from Data Release 12 with the best fit model galaxies subtracted. We cross-correlate the residual flux in these spectra with BOSS quasars, and detect a positive signal on scales 1-15 Mpc/h. We identify and remove a source of contamination not previously accounted for, due to the effects of quasar clustering on cross-fibre light. Corrected, our quasar-Lya emission cross-correlation is 50 % lower than that seen by Croft et al. for DR10, but still significant. Because only 3% of space is within 15 Mpc/h of a quasar, the result does not fully explore the global large-scale structure of Lya emission. To do this, we cross-correlate with the Lya forest. We find no signal in this case. The 95% upper limit on the global Lya mean surface brightness from Lya emission-Lya forest cross-correlation is mu < 1.2x10^-22 erg/s/cm^2/A/arcsec^2 This null result rules out the scenario where the observed quasar-Lya emission cross-correlation is primarily due to the large scale structure of star forming galaxies, Taken in combination, our results suggest that Lya emitting galaxies contribute, but quasars dominate within 15 Mpc/h. A simple model for Lya emission from quasars based on hydrodynamic simulations reproduces both the observed forest-Lya emission and quasar-Lya emission signals. The latter is also consistent with extrapolation of observations of fluorescent emission from smaller scales r < 1 Mpc.
126 - Wei-Hao Wang 2015
We report on a sensitive search for redshifted H$alpha$ line-emission from three high-metallicity damped Ly$alpha$ absorbers (DLAs) at $z approx 2.4$ with the Near-infrared Integral Field Spectrometer (NIFS) on the Gemini-North telescope, assisted by the ALTtitude conjugate Adaptive optics for the InfraRed (ALTAIR) system with a laser guide star. Within the NIFS field-of-view, $approx 3.22 times 2.92$ corresponding to $approx 25$ kpc $ times 23$ kpc at $z=2.4$, we detect no statistically significant line-emission at the expected redshifted H$alpha$ wavelengths. The measured root-mean-square noise fluctuations in $0.4$ apertures are $1-3times10^{-18}$ erg s$^{-1}$ cm$^{-2}$. Our analysis of simulated, compact, line-emitting sources yields stringent limits on the star-formation rates (SFRs) of the three DLAs, $< 2.2$~M$_{odot}$ yr$^{-1}$ ($3sigma$) for two absorbers, and $< 11$~M$_{odot}$ yr$^{-1}$ ($3sigma$) for the third, at all impact parameters within $approx 12.5$~kpc to the quasar sightline at the DLA redshift. For the third absorber, the SFR limit is $< 4.4$~M$_odot$ yr$^{-1}$ for locations away from the quasar sightline. These results demonstrate the potential of adaptive optics-assisted, integral field unit searches for galaxies associated with high-$z$ DLAs.
As a result of resonant scatterings off hydrogen atoms, Lyman-alpha (Lya) emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the o bserved Lya emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lya flux and spectral properties and induces correlations among them. The Lya flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lya optical depth in the viewing direction relative to those in all other directions. The distribution of Lya flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lya equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lya line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half maximum and asymmetry), pointing to a possibility of using Lya line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lya emission from star-forming galaxies. We discuss the implications of using Lya emission to probe the circumgalactic and intergalactic environments of galaxies.
146 - Branimir Sesar 2012
We present template radial velocity curves of $ab$-type RR Lyrae stars constructed from high-precision measurements of ${rm Halpha}$, ${rm Hbeta}$, and ${rm Hgamma}$ lines. Amplitude correlations between the Balmer line velocity curves, Johnson $V$-b and, and SDSS $g$- and $r$-band light curves are also derived. Compared to previous methods, these templates and derived correlations reduce the uncertainty in measured systemic (center-of-mass) velocities of RR Lyrae stars by up to 15 {kms}, and will be of particular interest to wide-area spectroscopic surveys such as the Sloan Digital Sky Survey (SDSS) and LAMOST Experiment for Galactic Understanding and Exploration (LEGUE).
69 - G. Ostlin 2005
We review the history and the current status of the understanding of the processes that regulate Lyman alpha emission from star-forming galaxies. We present some of the most recent results of our study to image local starburst galaxies in the Lyman a lpha emission line using the Advanced Camera for Surveys on the Hubble Space Telescope. Particular attention is dedicated to our study of the low-metallicity, dust-poor Blue Compact Galaxy ESO338-IG04. We discuss some of our local observational results with reference to the interpretation of results of high-redshift Lyman alpha surveys and recent simulations of the detection properties of high-z Lyman alpha emitting objects performed by our group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا