ترغب بنشر مسار تعليمي؟ اضغط هنا

FADC Pulse Reconstruction Using a Digital Filter for the MAGIC Telescope

614   0   0.0 ( 0 )
 نشر من قبل Hendrik Bartko
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Presently, the MAGIC telescope uses a 300 MHz FADC system to sample the transmitted and shaped signals from the captured Cherenkov light of air showers. We describe a method of Digital Filtering of the FADC samples to extract the charge and the arrival time of the signal: Since the pulse shape is dominated by the electronic pulse shaper, a numerical fit can be applied to the FADC samples taking the noise autocorrelation into account. The achievable performance of the digital filter is presented and compared to other signal reconstruction algorithms.


قيم البحث

اقرأ أيضاً

Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses be ing very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast flash analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17m diameter MAGIC telescope camera.
Utilization of chaotic signals for covert communications remains a very promising practical application. Multiple studies indicated that the major shortcoming of recently proposed chaos-based communication schemes is their susceptibility to noise and distortions in communication channels. In this talk we discuss a new approach to communication with chaotic signals, which demonstrates good performance in the presence of channel distortions. This communication scheme is based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse generator. The pulse train with chaotic interpulse intervals is used as a carrier. Binary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether ``0 or ``1 is transmitted. By synchronizing the receiver to the chaotic pulse train we can anticipate the timing of pulses corresponding to ``0 and ``1 and thus can decode the transmitted information. Based on the results of theoretical and experimental studies we shall discuss the basic design principles for the chaotic pulse generator, its synchronization, and the performance of the chaotic pulse communication scheme in the presence of channel noise and filtering.
64 - D. Tescaro 2007
In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the back ground from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.
73 - Steven Lantz 2020
One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filte ring, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as mkFit. A key piece of the algorithm is the Matriplex library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the mkFit algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. mkFit achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.
This paper proposes a particle volume reconstruction directly from an in-line hologram using a deep neural network. Digital holographic volume reconstruction conventionally uses multiple diffraction calculations to obtain sectional reconstructed imag es from an in-line hologram, followed by detection of the lateral and axial positions, and the sizes of particles by using focus metrics. However, the axial resolution is limited by the numerical aperture of the optical system, and the processes are time-consuming. The method proposed here can simultaneously detect the lateral and axial positions, and the particle sizes via a deep neural network (DNN). We numerically investigated the performance of the DNN in terms of the errors in the detected positions and sizes. The calculation time is faster than conventional diffracted-based approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا