ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope

63   0   0.0 ( 0 )
 نشر من قبل Diego Tescaro
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Tescaro




اسأل ChatGPT حول البحث

In February 2007 the MAGIC Air Cherenkov Telescope for gamma-ray astronomy was fully upgraded with an ultra fast 2 GSamples/s digitization system. Since the Cherenkov light flashes are very short, a fast readout can minimize the influence of the background from the light of the night sky. Also, the time structure of the event is an additional parameter to reduce the background from unwanted hadronic showers. An overview of the performance of the new system and its impact on the sensitivity of the MAGIC instrument will be presented.


قيم البحث

اقرأ أيضاً

Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses be ing very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast flash analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17m diameter MAGIC telescope camera.
The data acquisition system for the new CANGAROO-II 7m telescope is described.
A new data acquisition system for the high resolution magnetic spectrometer Lintott at the superconducting Darmstadt electron linear accelerator S-DALINAC was developed. It allows inclusive and coincidence electron scattering experiments with event rates up to 10 kHz.
The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes located in the Khomas Highland of Namibia. H.E.S.S. observes gamma rays above tens of GeV by detecting the Cherenkov light that is produced wh en Very High Energy gamma rays interact with the Earths atmosphere. The H.E.S.S. Data Acquisition System (DAQ) coordinates the nightly telescope operations, ensuring that the various components communicate properly and behave as intended. It also provides the interface between the telescopes and the people on shift who guide the operations. The DAQ comprises both the hardware and software, and since the beginning of H.E.S.S., both elements have been continuously adapted to improve the data-taking capabilities of the array and push the limits of what H.E.S.S. is capable of. Most recently, this includes the upgrade of the entire computing cluster hosting the DAQ software, and the accommodation of a new camera on the large 28m H.E.S.S. telescope. We discuss the performance of the upgraded DAQ and the lessons learned from these activities.
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loade d liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا