ﻻ يوجد ملخص باللغة العربية
We investigate the relationship between the velocity dispersion of the gas and the SN rate and feedback efficiency in the ISM. We explore the constancy of the velocity dispersion profiles in the outer parts of galactic disks at~6-8 km s^-1, and the transition to the starburst regime. Our results show that a) SN driving leads to constant velocity dispersions of sig~6 km s^-1 for the total gas and sigHI~3 km s^-1 for the HI gas, independent of the SN rate, for values of the rate between 0.01-0.5 the Galactic rate R_{G},b) the position of the transition to the starburst regime at SFR/Area~5*10^-3-10^-2 M_sol yr^-1 kpc^-2 observed in the simulations, is in good agreement with the transition to the starburst regime in the observations, c) for the high SN rates, no HI gas is present in the simulations box, however, for the total gas velocity dispersion, there is good agreement between the models and the observations,d) at the intermediate SN rates R/R_{G}~0.5-1, taking into account the thermal broadening of the HI line helps reach a good agreement in that regime between the models and the observations,e) for R/R_{G}<0.5, sig and sigHI fall below the observed values by a factor of~2. However, a set of simulation with different values of epsilon indicates that for larger values of the supernova feedback efficiencies, velocity dispersions of the HI gas of the order of 5-6 km s^{-1} can be obtained, in closer agreement with the observations. The fact that for R/R_{G}<0.5, the HI gas velocity dispersions are a factor ~2 smaller than the observed values could result from the fact that we might have underestimated the SN feedback efficiency. It might also be an indication that other physical processes couple to the stellar feedback in order to produce the observed level of turbulence in galactic disks.
We study the structure of spatially resolved, line-of-sight velocity dispersion for galaxies in the Epoch of Reionization (EoR) traced by [CII] $158murm{m}$ line emission. Our laboratory is a simulated prototypical Lyman-break galaxy, Freesia, part o
The density structure of the interstellar medium (ISM) determines where stars form and release energy, momentum, and heavy elements, driving galaxy evolution. Density variations are seeded and amplified by gas motion, but the exact nature of this mot
Some previous investigations have found that the fraction (f_AGN) of active galactic nuclei (AGNs) is lower in clusters than in the field. This can result from the suppression of galaxy-galaxy mergers in high-velocity dispersion (sigma_v) clusters, i
Using the Australia Telescope Compact Array, we have carried out a survey of the HI emission in the direction of the ``barrel-shaped supernova remnant (SNR) G320.4-1.2 (MSH 15-52) and its associated young pulsar B1509-58. The angular resolution of th
We present an estimate of the bolometric X-ray luminosity - velocity dispersion L_x - sigma_v relation measured from a new, large and homogeneous sample of 171 low redshift, X-ray selected galaxy clusters. The linear fitting of log(L_x) - log(sigma_v