ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interstellar Medium around the Supernova Remnant G320.4-1.2

610   0   0.0 ( 0 )
 نشر من قبل Bryan Gaensler
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. M. Dubner




اسأل ChatGPT حول البحث

Using the Australia Telescope Compact Array, we have carried out a survey of the HI emission in the direction of the ``barrel-shaped supernova remnant (SNR) G320.4-1.2 (MSH 15-52) and its associated young pulsar B1509-58. The angular resolution of the data is 4.0x2.7 arcmin, and the rms noise of the order of 30 mJy/beam (~0.5 K). The HI observations indicate that the N-NW radio limb has encountered a dense HI filament (density ~12 cm^-3) at the same LSR velocity than that of the SNR (V_LSR ~ -68 km/s). This HI concentration would be responsible for the flattened shape of the NW lobe of G320.4-1.2, and for the formation of the radio/optical/X-ray nebula RCW 89. The emission associated with the bright knots in the interior of RCW 89 can be explained as arising from the interaction between the collimated relativistic outflow from the pulsar and the denser part of this HI filament (density ~15 cm^-3). The S-SE half of the SNR, on the other hand, seems to have rapidly expanded across a lower density enviroment (density ~0.4 cm^-3). The HI data also reveal an unusual HI feature aligned with a collimated outflow generated by the pulsar, suggestive of association with the SNR. The anomalous kinematical velocity of this feature (V_LSR ~ 15 km/s), however, is difficult to explain.



قيم البحث

اقرأ أيضاً

The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White & Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White & Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We find that, while certain general results of the White & Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White & Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.
We use new large area far infrared maps ranging from 65 - 500 microns obtained with the AKARI and the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) missions to characterize the dust emission toward the Cassiopeia A supernova remnant (S NR). Using the AKARI high resolution data we find a new tepid dust grain population at a temperature of ~35K and with an estimated mass of 0.06 solar masses. This component is confined to the central area of the SNR and may represent newly-formed dust in the unshocked supernova ejecta. While the mass of tepid dust that we measure is insufficient by itself to account for the dust observed at high redshift, it does constitute an additional dust population to contribute to those previously reported. We fit our maps at 65, 90, 140, 250, 350, and 500 microns to obtain maps of the column density and temperature of cold dust (near 16 K) distributed throughout the region. The large column density of cold dust associated with clouds seen in molecular emission extends continuously from the surrounding interstellar medium to project on the SNR, where the foreground component of the clouds is also detectable through optical, X-ray, and molecular extinction. At the resolution available here, there is no morphological signature to isolate any cold dust associated only with the SNR from this confusing interstellar emission. Our fit also recovers the previously detected hot dust in the remnant, with characteristic temperature 100 K.
120 - Yi Yang 2016
We present multiple-epoch measurements of the size and surface brightness of the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82. Hubble Space Telescope (HST) ACS/WFC images were taken ~277 and ~416 days after B-band maximum in the filters F475W, F606W, and F775W. Observations with HST WFC3/UVIS images at epochs ~216 and ~365 days (Crotts 2015) are included for a more complete analysis. The images reveal the temporal evolution of at least two major light-echo components. The first one exhibits a filled ring structure with position-angle-dependent intensity. This radially extended, diffuse echo indicates the presence of an inhomogeneous interstellar dust cloud ranging from ~100 pc to ~500 pc in the foreground of the SN. The second echo component appears as an unresolved luminous quarter-circle arc centered on the SN. The wavelength dependence of scattering measured in different dust components suggests that the dust producing the luminous arc favors smaller grain sizes, while that causing the diffuse light echo may have sizes similar to those of the Milky Way dust. Smaller grains can produce an optical depth consistent with that along the supernova-Earth line of sight measured by previous studies around maximum light. Therefore, it is possible that the dust slab, from which the luminous arc arises, is also responsible for most of the extinction towards SN 2014J. The optical depths determined from the Milky Way-like dust in the scattering matters are lower than that produced by the dust slab.
We present a three-year series of observations at 24 microns with the Spitzer Space Telescope of the interstellar material in a 200 x 200 arcmin square area centered on Cassiopeia A. Interstellar dust heated by the outward light pulse from the supern ova explosion emits in the form of compact, moving features. Their sequential outward movements allow us to study the complicated three-dimensional structure of the interstellar medium (ISM) behind and near Cassiopeia A. The ISM consists of sheets and filaments, with many structures on a scale of a parsec or less. The spatial power spectrum of the ISM appears to be similar to that of fractals with a spectral index of 3.5. The filling factor for the small structures above the spatial wavenumber k ~ 0.5 cycles/pc is only ~ 0.4%.
181 - Adam M. Ritchey 2020
We present an analysis of moderately high resolution optical spectra obtained for the sight line to CD-23 13777, an O9 supergiant that probes high velocity interstellar gas associated with the supernova remnant W28. Absorption components at both high positive and high negative velocity are seen in the interstellar Na I D and Ca II H and K lines toward CD-23 13777. The high velocity components exhibit low Na I/Ca II ratios, suggesting efficient grain destruction by shock sputtering. High column densities of CH+, and high CH+/CH ratios, for the components seen at lower velocity may be indicative of enhanced turbulence in the clouds interacting with W28. The highest positive and negative velocities of the components seen in Na I and Ca II absorption toward CD-23 13777 imply that the velocity of the blast wave associated with W28 is at least 150 km/s, a value that is significantly higher than most previous estimates. The line of sight to CD-23 13777 passes very close to a well-known site of interaction between the SNR and a molecular cloud to the northeast. The northeast molecular cloud exhibits broad molecular line emission, OH maser emission from numerous locations, and bright extended GeV and TeV gamma-ray emission. The sight line to CD-23 13777 is thus a unique and valuable probe of the interaction between W28 and dense molecular gas in its environs. Future observations at UV and visible wavelengths will help to better constrain the abundances, kinematics, and physical conditions in the shocked and quiescent gas along this line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا