ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray Spectral Properties and Variability of Luminous High-Redshift Active Galactic Nuclei

149   0   0.0 ( 0 )
 نشر من قبل Ohad Shemmer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Shemmer




اسأل ChatGPT حول البحث

We perform a detailed investigation of moderate-to-high quality X-ray spectra of ten of the most luminous active galactic nuclei (AGNs) known at z>4 (up to z~6.28). This study includes five new XMM observations and five archived X-ray observations (four by XMM and one by Chandra). We find that the X-ray power-law photon indices of our sample, composed of eight radio-quiet sources and two that are moderately radio loud, are not significantly different from those of lower redshift AGNs. The upper limits obtained on intrinsic neutral hydrogen column densities, N_H<~10^{22}-10^{23} cm^{-2}, indicate that these AGNs are not significantly absorbed. A joint fit performed on our eight radio-quiet sources, with a total of ~7000 photons, constrains the mean photon index of z>4 radio-quiet AGNs to Gamma=1.97^{+0.06}_{-0.04}, with no detectable intrinsic dispersion from source to source. We also obtain a strong constraint on the mean intrinsic column density, N_H<~3x10^{21} cm^{-2}, showing that optically selected radio-quiet AGNs at z>4 are, on average, not more absorbed than their lower-redshift counterparts. All this suggests that the X-ray production mechanism and the central environment in radio-quiet AGNs have not significantly evolved over cosmic time. The mean equivalent width of a putative neutral narrow Fe Ka line is constrained to be <~190 eV, and similarly we place constraints on the mean Compton reflection component (R<~1.2). None of the AGNs varied on short (~1 hr) timescales, but on longer timescales (months-to-years) strong variability is observed in four of the sources. In particular, the X-ray flux of the z=5.41 radio-quiet AGN SDSS 0231-0728 dropped by a factor of ~4 over a rest-frame period of 73 d. This is the most extreme X-ray variation observed in a luminous z>4 radio-quiet AGN.



قيم البحث

اقرأ أيضاً

The observed relation between the X-ray radiation from AGNs, originating in the corona, and the optical/UV radiation from the disk is usually described by the anticorrelation between the UV to X-ray slope alpha_ox and the UV luminosity. Many factors can affect this relation, including: enhanced X-ray emission associated with the jets of radio-loud AGNs; X-ray absorption associated with the UV Broad Absorption Line (BAL) outflows; other X-ray absorption not associated with BALs; intrinsic X-ray weakness; UV and X-ray variability, and non-simultaneity of UV and X-ray observations. The separation of these effects provides information about the intrinsic alpha_ox-L_UV relation and its dispersion, constraining models of disk-corona coupling. We extract simultaneous data from the second XMM-Newton serendipitous source catalogue and the XMM-Newton Optical Monitor Serendipitous UV Source Survey Catalog, and derive the single-epoch alpha_ox indices. We use ensemble structure functions to analyse multi-epoch data. We confirm the anticorrelation of alpha_ox with L_UV, and do not find any evidence of a dependence of alpha_ox on z. The dispersion in our simultaneous data (0.12) is not significantly smaller than in previous non-simultaneous studies, suggesting that artificial alpha_ox variability introduced by non-simultaneity is not the main cause of dispersion. Intrinsic alpha_ox variability, i.e., the true variability of the X-ray to optical ratio, is instead important, and accounts for ~30% of the total variance, or more. Inter-source dispersion, due to intrinsic differences in the average alpha_ox values from source to source, is also important. The dispersion introduced by variability is mostly caused by the long timescale variations, which are expected to be driven by the optical variations.
The broad iron spectral features are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the relativistic disc reflection scenario or the partial covering scenario: It i s hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board Suzaku. This observational mode has a time-resolution of 7.8~ms as well as a CCD energy-resolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN such as 1H0707--495, where the variation amplitude significantly drops at the iron K-energy band. This difference can be naturally explained in the framework of the partial covering scenario.
122 - Luis Ho 2016
We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spect ra reveal broad H$alpha$ emission in all the sources, allowing us to estimate robust viral BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median $M_{rm BH} = 1.2times 10^6M_odot$ and median $L_{rm bol}/L_{rm Edd}=0.44$. The sample follows the $M_{rm BH}-sigma_*$ relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O II] $lambda 3727$, [O III] $lambda 5007$, and X-rays.
We present results on a systematic study of flux variability on hourly time-scales in a large sample of active galactic nuclei (AGN) in the 3-79 keV band using data from Nuclear Spectroscopic Telescope Array. Our sample consists of 4 BL Lac objects ( BL Lacs), 3 flat spectrum radio quasars (FSRQs) 24 Seyfert 1, 42 Seyfert 2 and 8 narrow line Seyfert 1 (NLSy1) galaxies. We find that in the 3-79 keV band, about 65% of the sources in our sample show significant variations on hourly time scales. Using Mann-Whitney U-test and Kolmogorov-Smirnov test, we find no difference in the variability behaviour between Seyfert 1 and 2 galaxies. The blazar sources (FSRQs and BL Lacs) in our sample, are more variable than Seyfert galaxies that include Seyfert 1 and Seyfert 2 in the soft (3-10 keV), hard (10-79 keV) and total (3-79 keV) bands. NLSy1 galaxies show the highest duty cycle of variability (87%), followed by BL Lacs (82%), Seyfert galaxies (56%) and FSRQs (23%). We obtained flux doubling/halving time in the hard X-ray band less than 10 min in 11 sources. The flux variations between the hard and soft bands in all the sources in our sample are consistent with zero lag.
We present the hard-band ($2-10,mathrm{keV}$) X-ray luminosity function (HXLF) of $0.5-2,mathrm{keV}$ band selected AGN at high redshift. We have assembled a sample of 141 AGN at $3<zlesssim5$ from X-ray surveys of different size and depth, in order to sample different regions in the $ L_X - z$ plane. The HXLF is fitted in the range $mathrm{logL_Xsim43-45}$ with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of $sim10$ from $z=3$ to 5. A luminosity-dependent density evolution model which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity ($mathrm{logL_X}<44$), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density $mathrm{logN_H}geq23$ to be $0.54pm0.05$, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous ($mathrm{L_X>10^{44}mathrm{erg,s^{-1}}}$) obscured AGN fraction from $z=0$ to $z>3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا