ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability and the X-ray/UV ratio of Active Galactic Nuclei

157   0   0.0 ( 0 )
 نشر من قبل Fausto Vagnetti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The observed relation between the X-ray radiation from AGNs, originating in the corona, and the optical/UV radiation from the disk is usually described by the anticorrelation between the UV to X-ray slope alpha_ox and the UV luminosity. Many factors can affect this relation, including: enhanced X-ray emission associated with the jets of radio-loud AGNs; X-ray absorption associated with the UV Broad Absorption Line (BAL) outflows; other X-ray absorption not associated with BALs; intrinsic X-ray weakness; UV and X-ray variability, and non-simultaneity of UV and X-ray observations. The separation of these effects provides information about the intrinsic alpha_ox-L_UV relation and its dispersion, constraining models of disk-corona coupling. We extract simultaneous data from the second XMM-Newton serendipitous source catalogue and the XMM-Newton Optical Monitor Serendipitous UV Source Survey Catalog, and derive the single-epoch alpha_ox indices. We use ensemble structure functions to analyse multi-epoch data. We confirm the anticorrelation of alpha_ox with L_UV, and do not find any evidence of a dependence of alpha_ox on z. The dispersion in our simultaneous data (0.12) is not significantly smaller than in previous non-simultaneous studies, suggesting that artificial alpha_ox variability introduced by non-simultaneity is not the main cause of dispersion. Intrinsic alpha_ox variability, i.e., the true variability of the X-ray to optical ratio, is instead important, and accounts for ~30% of the total variance, or more. Inter-source dispersion, due to intrinsic differences in the average alpha_ox values from source to source, is also important. The dispersion introduced by variability is mostly caused by the long timescale variations, which are expected to be driven by the optical variations.



قيم البحث

اقرأ أيضاً

Variability, both in X-ray and optical/UV, affects the well-known anti-correlation between the $alpha_{ox}$ spectral index and the UV luminosity of active galactic nuclei, contributing part of the dispersion around the average correlation (intra-sour ce dispersion), in addition to the differences among the time-average $alpha_{ox}$ values from source to source (inter-source dispersion). We want to evaluate the intrinsic $alpha_{ox}$ variations in individual objects, and their effect on the dispersion of the $alpha_{ox}-L_{UV}$ anti-correlation. We use simultaneous UV/X-ray data from Swift observations of a low-redshift sample, to derive the epoch-dependent $alpha_{ox}(t)$ indices. We correct for the host galaxy contribution by a spectral fit of the optical/UV data. We compute ensemble structure functions to analyse variability of multi-epoch data. We find a strong intrinsic $alpha_{ox}$ variability, which makes an important contribution ($sim40%$ of the total variance) to the dispersion of the $alpha_{ox}-L_{UV}$ anti-correlation (intra-source dispersion). The strong X-ray variability and weaker UV variability of this sample are comparable to other samples of low-z AGNs, and are neither due to the high fraction of strongly variable NLS1s, nor to dilution of the optical variability by the host galaxies. Dilution affects instead the slope of the anti-correlation, which steepens, once corrected, becoming similar to higher luminosity sources. The structure function of $alpha_{ox}$ increases with the time lag up to $sim$1 month. This indicates the important contribution of the intermediate-long timescale variations, possibly generated in the outer parts of the accretion disk.
219 - Y. L. Ai , W. Yuan , H. Y. Zhou 2010
The dependence of the long-term optical/UV variability on the spectral and the fundamental physical parameters for radio-quiet active galactic nuclei (AGNs) is investigated. The multi-epoch repeated photometric scanning data in the Stripe-82 region o f the Sloan Digital Sky Survey (SDSS) are exploited for two comparative AGN samples (mostly quasars) selected therein, a broad-line Seyfert,1 (BLS1) type sample and a narrow-line Seyfert,1 (NLS1) type AGN sample within redshifts 0.3--0.8. Their spectral parameters are derived from the SDSS spectroscopic data. It is found that on rest-frame timescales of several years the NLS1-type AGNs show systematically smaller variability compared to the BLS1-type. In fact, the variability amplitude is found to correlate, though only moderately, with the Eigenvector,1 parameters, i.e., the smaller the hb linewidth, the weaker the [O,III] and the stronger the feii emission, the smaller the variability amplitude is. Moreover, an interesting inverse correlation is found between the variability and the Eddington ratio, which is perhaps more fundamental. The previously known dependence of the variability on luminosity is not significant, and that on black hole mass---as claimed in recent papers and also present in our data---fades out when controlling for the Eddington ratio in the correlation analysis, though these may be partly due to the limited ranges of luminosity and black hole mass of our samples. Our result strongly supports that an accretion disk is likely to play a major role in producing the opitcal/UV variability.
X-ray variation is a ubiquitous feature of active galactic nuclei (AGNs), however, its origin is not well understood. In this paper, we show that the X-ray flux variations in some AGNs, and correspondingly the power spectral densities (PSDs) of the v ariations, may be interpreted as being caused by absorptions of eclipsing clouds or clumps in the broad line region (BLR) and the dusty torus. By performing Monte-Carlo simulations for a number of plausible cloud models, we systematically investigate the statistics of the X-ray variations resulting from the cloud eclipsing and the PSDs of the variations. For these models, we show that the number of eclipsing events can be significant and the absorption column densities due to those eclipsing clouds can be in the range from 10^{21} to 10^{24} cm^{-2}, leading to significant X-ray variations. We find that the PSDs obtained from the mock observations for the X-ray flux and the absorption column density resulting from these models can be described by a broken double power law, similar to those directly measured from observations of some AGNs. The shape of the PSDs depend strongly on the kinematic structures and the intrinsic properties of the clouds in AGNs. We demonstrate that the X-ray eclipsing model can naturally lead to a strong correlation between the break frequencies (and correspondingly the break timescales) of the PSDs and the masses of the massive black holes (MBHs) in the model AGNs, which can be well consistent with the one obtained from observations. Future studies of the PSDs of the AGN X-ray (and possibly also the optical-UV) flux and column density variations may provide a powerful tool to constrain the structure of the BLR and the torus and to estimate the MBH masses in AGNs.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
The X-ray variability of the Active Galactic Nuclei (AGN) has been most often investigated with studies of individual, nearby, sources, and only a few ensemble analyses have been applied to large samples in wide ranges of luminosity and redshift. We want to determine the ensemble variability properties of two serendipitously selected AGN samples extracted from the catalogues of XMM-Newton and Swift, with redshift between ~0.2 and ~4.5, and X-ray luminosities, in the 0.5-4.5 keV band, between ~10^43 erg/s and ~10^46 erg/s. We use the structure function (SF), which operates in the time domain, and allows for an ensemble analysis even when only a few observations are available for individual sources and the power spectral density (PSD) cannot be derived. SF is also more appropriate than fractional variability and excess variance, because such parameters are biased by the duration of the monitoring time interval in the rest-frame, and thus by cosmological time dilation. We find statistically consistent results for the two samples, with the SF described by a power law of the time lag, approximately as SF propto tau^0.1. We do not find evidence of the break in the SF, at variance with the case of lower luminosity AGNs. We confirm a strong anti-correlation of the variability with X-ray luminosity, accompanied by a change of the slope of the SF. We find evidence in support of a weak, intrinsic, average increase of X-ray variability with redshift. The change of amplitude and slope of the SF with X-ray luminosity provides new constraints on both single oscillator models and multiple subunits models of variability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا