ﻻ يوجد ملخص باللغة العربية
This paper describes STECMAP (STEllar Content via Maximum A Posteriori), a flexible, non-parametric inversion method for the interpretation of the integrated light spectra of galaxies, based on synthetic spectra of single stellar populations (SSPs). We focus on the recovery of a galaxys star formation history and stellar age-metallicity relation. We use the high resolution SSPs produced by PEGASE-HR to quantify the informational content of the wavelength range 4000 - 6800 Angstroms. A detailed investigation of the properties of the corresponding simplified linear problem is performed using singular value decomposition. It turns out to be a powerful tool for explaining and predicting the behaviour of the inversion. We provide means of quantifying the fundamental limitations of the problem considering the intrinsic properties of the SSPs in the spectral range of interest, as well as the noise in these models and in the data. We performed a systematic simulation campaign and found that, when the time elapsed between two bursts of star formation is larger than 0.8 dex, the properties of each episode can be constrained with a precision of 0.04 dex in age and 0.02 dex in metallicity from high quality data (R=10 000, signal-to-noise ratio SNR=100 per pixel), not taking model errors into account. The described methods and error estimates will be useful in the design and in the analysis of extragalactic spectroscopic surveys.
We introduce STECKMAP (STEllar Content and Kinematics via Maximum A Posteriori), a method to recover the kinematical properties of a galaxy simultaneously with its stellar content from integrated light spectra. It is an extension of STECMAP (astro-ph
This paper presents a new approach, called perturb-max, for high-dimensional statistical inference that is based on applying random perturbations followed by optimization. This framework injects randomness to maximum a-posteriori (MAP) predictors by
We introduce a new algorithm for reinforcement learning called Maximum aposteriori Policy Optimisation (MPO) based on coordinate ascent on a relative entropy objective. We show that several existing methods can directly be related to our derivation.
Gravitational lensing of the CMB is a valuable cosmological signal that correlates to tracers of large-scale structure and acts as a important source of confusion for primordial $B$-mode polarization. State-of-the-art lensing reconstruction analyses
We present an extended ultraviolet-blue (850-4700 AA) library of theoretical stellar spectral energy distributions (SEDs) computed at high resolution, R= 50,000. The UVBLUE grid, as we named the library, is based on LTE calculations carried out with