ترغب بنشر مسار تعليمي؟ اضغط هنا

UVBLUE: a new high-resolution theoretical library of ultraviolet stellar spectra

62   0   0.0 ( 0 )
 نشر من قبل Lino H. Rodriguez-Merino
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extended ultraviolet-blue (850-4700 AA) library of theoretical stellar spectral energy distributions (SEDs) computed at high resolution, R= 50,000. The UVBLUE grid, as we named the library, is based on LTE calculations carried out with ATLAS9 and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800 entries that cover a large volume of the parameter space. It spans a range in effective temperature from 3000 to 50,000 K, the surface gravity ranges from log g= 0.0 to 5.0 with a step of 0.5 dex, while seven chemical compositions are considered: [Fe/H]= -2.0, -1.5, -1.0, -0.5, +0.0, +0.3 and +0.5 dex. For its coverage across the H-R diagram, this library is the most comprehensive one ever computed at high resolution in the short-wavelength spectral range, and useful application can be foreseen both for the study of single stars and in population synthesis models of galaxies and other stellar systems.



قيم البحث

اقرأ أيضاً

We present a high resolution synthetic spectral library, INTRIGOSS, designed for studying FGK stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surfac e Flux SPectra (FSP), in the 4830-5400 A, wavelength range, were computed with the SPECTRUM code. INTRIGOSS uses the solar composition by Grevesse et al. 2007 and four [alpha/Fe] abundance ratios and consists of 15,232 spectra. The synthetic spectra are computed with astrophysical gf-values derived by comparing synthetic predictions with a very high SNR solar spectrum and the UVES-U580 spectra of five cool giants. The validity of the NSPs is assessed by using the UVES-U580 spectra of 2212 stars observed in the framework of the Gaia-ESO Survey and characterized by homogeneous and accurate atmospheric parameter values and by detailed chemical compositions. The greater accuracy of NSPs with respect to spectra from the AMBRE, GES_Grid, PHOENIX, C14, and B17 synthetic spectral libraries is demonstrated by evaluating the consistency of the predictions of the different libraries for the UVES-U580 sample stars. The validity of the FSPs is checked by comparing their prediction with both observed spectral energy distribution and spectral indices. The comparison of FSPs with SEDs derived from ELODIE, INDO--U.S., and MILES libraries indicates that the former reproduce the observed flux distributions within a few percent and without any systematic trend. The good agreement between observational and synthetic Lick/SDSS indices shows that the predicted blanketing of FSPs well reproduces the observed one, thus confirming the reliability of INTRIGOSS FSPs.
We computed a comprehensive set of theoretical ultraviolet spectra of hot, massive stars with the radiation-hydrodynamics code WM-Basic. This model atmosphere and spectral synthesis code is optimized for computing the strong P Cygni-type lines origin ating in the winds of hot stars, which are the strongest features in the ultraviolet spectral region. The computed set is suitable as a spectral library for inclusion in evolutionary synthesis models of star clusters and star-forming galaxies. The chosen stellar parameters cover the upper left Hertzsprung-Russell diagram at L >~ 10^2.75 Lsun and T_eff >~ 20,000 K. The adopted elemental abundances are 0.05 Zsun, 0.2 Zsun, 0.4 Zsun, Zsun, and 2 Zsun. The spectra cover the wavelength range from 900 to 3000 {AA} and have a resolution of 0.4 {AA}. We compared the theoretical spectra to data of individual hot stars in the Galaxy and the Magellanic Clouds obtained with the International Ultraviolet Explorer (IUE) and Far Ultraviolet Spectroscopic Explorer (FUSE) satellites and found very good agreement. We built a library with the set of spectra and implemented it into the evolutionary synthesis code Starburst99 where it complements and extends the existing empirical library towards lower chemical abundances. Comparison of population synthesis models at solar and near-solar composition demonstrates consistency between synthetic spectra generated with either library. We discuss the potential of the new library for the interpretation of the rest-frame ultraviolet spectra of star-forming galaxies. Properties that can be addressed with the models include ages, initial mass function, and heavy-element abundance. The library can be obtained both individually or as part of the Starburst99 package.
Empirical stellar spectral libraries have applications in both extragalactic and stellar studies, and they have an advantage over theoretical libraries because they naturally include all relevant chemical species and physical processes. During recent years we see a stream of new high quality sets of spectra, but increasing the spectral resolution and widening the wavelength coverage means resorting to multi-order echelle spectrographs. Assembling the spectra from many pieces results in lower fidelity of their shapes. We aim to offer the community a library of high signal-to-noise spectra with reliable continuum shapes. Furthermore, the using an integral field unit (IFU) alleviates the issue of slit losses. Our library was build with the MUSE (Multi-Unit Spectroscopic Explorer) IFU instrument. We obtained spectra over nearly the entire visual band (lambda~4800-9300 Ang). We assembled a library of 35 high-quality MUSE spectra for a subset of the stars from the X-shooter Spectral Library. We verified the continuum shape of these spectra with synthetic broad band colors derived from the spectra. We also report some spectral indices from the Lick system, derived from the new observations. We offer a high-fidelity set of stellar spectra that covers the Hertzsprung-Russell diagram. It can be useful for both extragalactic and stellar work and demonstrates that the IFUs are excellent tools for building reliable spectral libraries.
New instrumental capabilities and the wealth of astrophysical information extractable from the near-infrared wavelength region have led to a growing interest in the field of high resolution spectroscopy at 1-5 mu. We aim to provide a library of obser ved high-resolution and high signal-to-noise-ratio near-infrared spectra of stars of various types throughout the Hertzsprung-Russell diagram. This is needed for the exploration of spectral features in this wavelength range and for comparison of reference targets with observations and models. High quality spectra were obtained using the CRIRES near-infrared spectrograph at ESOs VLT covering the range from 0.97 to 5.3 mu at high spectral resolution. Accurate wavelength calibration and correction for of telluric lines were performed by fitting synthetic transmission spectra for the Earths atmosphere to each spectrum individually. We describe the observational strategy and the current status and content of the library which includes 13 objects. The first examples of finally reduced spectra are presented. This publication will serve as a reference paper to introduce the library to the community and explore the extensive amount of material.
A new stellar library developed for stellar population synthesis modeling is presented. The library consist of 985 stars spanning a large range in atmospheric parameters. The spectra were obtained at the 2.5m INT telescope and cover the range 3525-75 00A at 2.3A (FWHM) spectral resolution. The spectral resolution, spectral type coverage, flux calibration accuracy and number of stars represent a substantial improvement over previous libraries used in population synthesis models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا