ترغب بنشر مسار تعليمي؟ اضغط هنا

VLTI observations of IRS~3: The brightest compact MIR source at the Galactic Centre

391   0   0.0 ( 0 )
 نشر من قبل Joerg-Uwe Pott
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dust enshrouded star IRS~3 in the central light year of our galaxy was partially resolved in a recent VLTI experiment. The presented observation is the first step in investigating both IRS~3 in particular and the stellar population of the Galactic Centre in general with the VLTI at highest angular resolution. We will outline which scientific issues can be addressed by a complete MIDI dataset on IRS~3 in the mid infrared.



قيم البحث

اقرأ أيضاً

The inner 10 pc of our galaxy contains many counterpart candidates of the very high energy (VHE; > 100 GeV) gamma-ray point source HESS J1745-290. Within the point spread function of the H.E.S.S. measurement, at least three objects are capable of acc elerating particles to very high energies and beyond, and of providing the observed gamma-ray flux. Previous attempts to address this source confusion were hampered by the fact that the projected distances between those objects were of the order of the error circle radius of the emission centroid (34, dominated by the pointing uncertainty of the H.E.S.S. instrument). Here we present H.E.S.S. data of the Galactic Centre region, recorded with an improved control of the instrument pointing compared to H.E.S.S. standard pointing procedures. Stars observed during gamma-ray observations by optical guiding cameras mounted on each H.E.S.S. telescope are used for off-line pointing calibration, thereby decreasing the systematic pointing uncertainties from 20 to 6 per axis. The position of HESS J1745-290 is obtained by fitting a multi-Gaussian profile to the background-subtracted gamma-ray count map. A spatial comparison of the best-fit position of HESS J1745-290 with the position and morphology of candidate counterparts is performed. The position is, within a total error circle radius of 13, coincident with the position of the supermassive black hole Sgr A* and the recently discovered pulsar wind nebula candidate G359.95-0.04. It is significantly displaced from the centroid of the supernova remnant Sgr A East, excluding this object with high probability as the dominant source of the VHE gamma-ray emission.
The Infrared Space Observatory Long wavelength Spectrometerhas been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The CND disc is clearly seen in the maps of molecular lines such as CO and OH, whilst the central region dominates in other atomic and ionised lines. The spectrum toward Sgr A star is best represented by the sum of a 58 K blackbody, superposed with 22 identifiable emission or absorption features, including four lines each attributed to CO and OH, two broad features that may be indicative of a complex of solid state features, two H2O lines, and the rest being various atomic or ionised atomic lines.
The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a compact source moving on the observe d orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive ($dot{M}_mathrm{w}=5times 10^{-7} ;M_{odot} mathrm{yr^{-1}}$) and slow ($50 ;mathrm{km ;s^{-1}}$) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger ($>100 ;mathrm{AU}$) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2s dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.
203 - C. van Eldik , O. Bolz , I. Braun 2007
Observations by the H.E.S.S. system of imaging atmospheric Cherenkov telescopes provide the most sensitive measurements of the Galactic Centre region in the energy range 150 GeV - 30 TeV. The vicinity of the kinetic centre of our galaxy harbours nume rous objects which could potentially accelerate particles to very high energies (VHE, > 100 GeV) and thus produce the Gamma-ray flux observed. Within statistical and systematic errors, the centroid of the point-like emission measured by H.E.S.S. was found to be in good agreement with the position of the supermassive black hole Sgr A* and the recently discovered PWN candidate G359.95-0.04. Given a systematic pointing error of about 30, a possible association with the SNR Sgr A East could not be ruled out with the 2004 H.E.S.S. data. In this contribution an update is given on the position of the H.E.S.S. Galactic Centre source using 2005/2006 data. The systematic pointing error is reduced to 6 per axis using guiding telescopes for pointing corrections, making it possible to exclude with high significance Sgr A East as the source of the VHE Gamma-Rays.
The Odin satellite has been used to detect emission and absorption in the 557-GHz H2O line in the Galactic Centre towards the Sgr A* Circumnuclear Disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km/s Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km/s are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas - HPVG) has been identified in the positive velocity range of ~ +120 to +220 km/s, seen definitely in absorption against the stronger dust continuum emission from the +20 km/s and +50 km/s clouds and possibly in emission towards the position of Sgr A* CND. The 548-GHz H2_18O isotope line towards the CND is not detected at the 0.02 K (rms) level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا