ﻻ يوجد ملخص باللغة العربية
The Odin satellite has been used to detect emission and absorption in the 557-GHz H2O line in the Galactic Centre towards the Sgr A* Circumnuclear Disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km/s Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km/s are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas - HPVG) has been identified in the positive velocity range of ~ +120 to +220 km/s, seen definitely in absorption against the stronger dust continuum emission from the +20 km/s and +50 km/s clouds and possibly in emission towards the position of Sgr A* CND. The 548-GHz H2_18O isotope line towards the CND is not detected at the 0.02 K (rms) level.
The Odin satellite has been used to search for the 118.75-GHz line of molecular oxygen (O2)in the Galactic centre. Odin observations were performed towards the Sgr A* circumnuclear disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds usin
The Infrared Space Observatory Long wavelength Spectrometerhas been used to map distribution of the emission from a sample of 22 atomic, molecular and ionised lines toward the Circumnuclear Disk at the Galactic Centre. The CND disc is clearly seen in
We present high-angular-resolution radio observations of the Arches cluster in the Galactic centre, one of the most massive young clusters in the Milky Way. The data were acquired in two epochs and at 6 and 10 GHz with the Karl G. Jansky Very Large A
We present high-angular-resolution radio continuum observations of the Quintuplet cluster, one of the most emblematic massive clusters in the Galactic centre. Data were acquired in two epochs and at 6 and 10 GHz with the Karl J. Jansky Very Large Arr
Recent progress in pushing the sensitivity of the Imaging Atmospheric Cherenkov Technique into the 10 mCrab regime has enabled first sensitive observations of the innermost few 100 pc of the Milky Way in Very High Energy (VHE; >100 GeV) gamma rays. T