ترغب بنشر مسار تعليمي؟ اضغط هنا

Signature of Galactic Outflows as Absorption-Free Gaps in the Ly-alpha Forest

46   0   0.0 ( 0 )
 نشر من قبل Taotao Fang
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Taotao Fang




اسأل ChatGPT حول البحث

Powerful outflows from star-forming galaxies are expected to push away the neutral intergalactic medium (IGM) around those galaxies, and produce absorption-free gaps in the Ly-alpha forest. We analyze the abundance of gaps of various sizes in three high resolution spectra of quasars at z ~ 3 - 3.5. The gap statistics agrees well with a model in which galactic halos above a minimum mass scale of M_min ~ 10^10 M_sun produce bubbles with a characteristic radius of R_b ~ 0.48 Mpc/h. Both numbers are consistent with naive theoretical expectations, where the minimum galaxy mass reflects the threshold for infall of gas out of a photo-ionized IGM. The observed gaps are typically bounded by deep absorption features as expected from the accumulation of swept-up gas on the bubble walls.


قيم البحث

اقرأ أيضاً

In order to shed light on how galactic properties depend on the intergalactic medium (IGM) environment traced by the Ly$alpha$ forest, we observationally investigate the IGM-galaxy connection using the publicly available 3D IGM tomography data (CLAMA TO) and several galaxy catalogs in the COSMOS field. We measure the cross-correlation function (CCF) for $570$ galaxies with spec-$z$ measurements and detect a correlation with the IGM up to $50$ $h^{-1}$ comoving Mpc. We show that galaxies with stellar masses of $10^9-10^{10}$ M$_odot$ are the dominant contributor to the total CCF signal. We also investigate CCFs for several galaxy populations: Ly$alpha$ emitters (LAEs), H$alpha$ emitters (HAEs), [OIII] emitters (O3Es), active galactic nuclei (AGNs), and submillimeter galaxies (SMGs), and we detect the highest signal in AGNs and SMGs at large scales ($rgeq5$ $h^{-1}$ Mpc), but in LAEs at small scales ($r<5$ $h^{-1}$ Mpc). We find that they live in various IGM environments -- HAEs trace the IGM in a similar manner to the continuum-selected galaxies, but LAEs and O3Es tend to reside in higher-density regions. Additionally, LAEs CCF is flat up to $rsim3$ $h^{-1}$ Mpc, indicating that they tend to avoid the highest-density regions. For AGNs and SMGs, the CCF peak at $r=5-6$ $h^{-1}$ Mpc implies that they tend to be in locally lower-density regions. We suspect that it is due to the photoionization of IGM HI by AGNs, i.e., the proximity effect.
91 - Alvaro Orsi 2011
We study the properties of Ly-alpha emitters in a cosmological framework by computing the escape of Ly-alpha photons through galactic outflows. We combine the GALFORM semi-analytical model of galaxy formation with a Monte Carlo Ly-alpha radiative tra nsfer code. The properties of Ly-alpha emitters at 0<z<7 are predicted using two outflow geometries: a Shell of neutral gas and a Wind ejecting material, both expanding at constant velocity. We characterise the differences in the Ly-alpha line profiles predicted by the two outflow geometries in terms of their width, asymmetry and shift from the line centre for a set of outflows with different hydrogen column densities, expansion velocities and metallicities. In general, the Ly-alpha line profile of the Shell geometry is broader and more asymmetric, and the Ly-alpha escape fraction is lower than with the Wind geometry for the same set of parameters. In order to implement the outflow geometries in the semi-analytical model GALFORM, a number of free parameters in the outflow model are set by matching the luminosity function of Ly-alpha emitters over the whole observed redshift range. The models are consistent with the observationally inferred Ly-alpha escape fractions, equivalent width distributions and with the shape of the Ly-alpha line from composite spectra. Interestingly, our predicted UV luminosity function of Ly-alpha emitters and the fraction of Ly-alpha emitters in Lyman-break galaxy samples at high redshift are in partial agreement with observations. Attenuation of the Ly-alpha line by the presence of a neutral intergalactic medium at high redshift could be responsible for this disagreement. We predict that Ly-alpha emitters constitute a subset of the galaxy population with lower metallicities, lower instantaneous star formation rates and larger sizes than the overall population at the same UV luminosity.
Detecting HI using redshifted Ly-alpha absorption lines is 1e6 times more sensitive than using the 21cm emission line. We review recent discoveries of HI Ly-alpha absorbers made with the Hubble Space Telescope (HST) which have allowed us a first glim pse at gas in local intergalactic space between us and the ``Great Wall. Despite its mere 2.4m aperture, HST can detect absorbers with column densities as low as those found using Keck at high-z (log N(HI)=12.5 1/cm**2). New results that will be discussed include: the evolution of absorbers with redshift, the location of absorbers relative to galaxies (including the two-point correlation function for absorbers), the metallicity of absorbers far from galaxies, and the discovery of hot 1e5-1e6 K (shock-heated?) absorbers. The unique ability of VLA HI observations in discovering the nearest galaxies to these absorbers is stressed.
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1 le z le 3.5$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range $20hMpc<r<200hMpc$. A peak in the correlation function is seen at a separation equal to $(1.01pm0.03)$ times the distance expected for the BAO peak within a concordance $Lambda$CDM cosmology. This first detection of the BAO peak at high redshift, when the universe was strongly matter dominated, results in constraints on the angular diameter distance $da$ and the expansion rate $H$ at $z=2.3$ that, combined with priors on $H_0$ and the baryon density, require the existence of dark energy. Combined with constraints derived from Cosmic Microwave Background (CMB) observations, this result implies $H(z=2.3)=(224pm8){rm km,s^{-1}Mpc^{-1}}$, indicating that the time derivative of the cosmological scale parameter $dot{a}=H(z=2.3)/(1+z)$ is significantly greater than that measured with BAO at $zsim0.5$. This demonstrates that the expansion was decelerating in the range $0.7<z<2.3$, as expected from the matter domination during this epoch. Combined with measurements of $H_0$, one sees the pattern of deceleration followed by acceleration characteristic of a dark-energy dominated universe.
We provide an analytical description of the line broadening of HI absorbers in the Lyman-alpha forest resulting from Doppler broadening and Jeans smoothing. We demonstrate that our relation captures the dependence of the line-width on column density for narrow lines in z~3 mock spectra remarkably well. Broad lines at a given column density arise when the underlying density structure is more complex, and such clustering is not captured by our model. Our understanding of the line broadening opens the way to a new method to characterise the thermal state of the intergalactic medium and to determine the sizes of the absorbing structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا