ﻻ يوجد ملخص باللغة العربية
The spectrum and polarization produced by particles spiraling in a magnetic field undergo dramatic changes as the emitters transition from nonrelativistic to relativistic energies. However, none of the currently available methods for calculating the characteristics of this radiation field are adequate for the purpose of sustaining accuracy and speed of computation in the intensity, and none even attempt to provide a means of determining the polarization fraction other than in the cyclotron or synchrotron limits. But the transrelativistic regime, which we here find to lie between $5times 10^7$ K and $5times 10^9$ K for a thermal plasma, is becoming increasingly important in high-energy astrophysical environments, such as in the intra-cluster medium, and in the accretion flows of supermassive black holes. In this paper, we present simple, yet highly accurate, fitting formulae for the magnetobremsstrahlung (also known as cyclo-synchrotron) emissivity, its polarization fraction (and content), and the absorption cross-section. We demonstrate that both the harmonic and high-energy limiting behavior are well represented, incurring at most an error of $sim 5%$ throughout the transition region.
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way d
The polarization of the Cosmic Microwave Background (CMB)is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides
Charged lepton pairs are produced copiously in high-energy hadron collisions via electroweak gauge boson exchange, and are one of the most precisely measured final states in proton-proton collisions at the Large Hadron Collider (LHC). We propose that
The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{prime}pi^{pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9,$GeV $e^-$ beam on a $^3$H
The rates of multiparton collisions in high energy hadronic interactions provide information on the typical transverse distances between partons in the hadron structure. The different configurations of the hadron in transverse space are, on the other