ترغب بنشر مسار تعليمي؟ اضغط هنا

First measurement of unpolarized SIDIS cross section and cross section ratios from a $^3$He target

74   0   0.0 ( 0 )
 نشر من قبل Xuefei Yan
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{prime}pi^{pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 < x_{bj} < 0.45$, $1 < Q^2 < 4 , textrm{(GeV/c)}^2$, $0.45 < z_{h} < 0.65$, and $0.05 < P_t < 0.55 , textrm{GeV/c}$. The extracted SIDIS differential cross sections of $pi^{pm}$ production are compared with existing phenomenological models while the $^3$He nucleus approximated as two protons and one neutron in a plane wave picture, in multi-dimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.



قيم البحث

اقرأ أيضاً

Measurements of polarized neutron--polarized $^3$He scattering are reported. The target consisted of cryogenically-polarized solid $^3$He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences $De ltasigma_L$ and $Deltasigma_T$ were measured for incident neutron energies 2-8 MeV. The results are compared to phase-shift predictions based on four different analyses of n-$^3$He scattering. The best agreement is obtained with a recent R-matrix analysis of A=4 scattering and reaction data, lending strong suport to the $^4$He level scheme obtained in that analysis.
The total cross section of 12C(alpha,gamma)16O was measured for the first time by a direct and ungated detection of the 16O recoils. This measurement in inverse kinematics using the recoil mass separator ERNA in combination with a windowless He gas t arget allowed to collect data with high precision in the energy range E=1.9 to 4.9 MeV. The data represent new information for the determination of the astrophysical S(E) factor.
209 - V. Fischer 2019
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements were averaged over thermal spectra and have significant disagreements, a differential measurement has been performed using a Time-Of-Flight neutron beam and a $sim$4$pi$ gamma spectrometer. A fit to the differential cross section from $0.015-0.15$,eV, assuming a $1/v$ energy dependence, yields $sigma^{2200} = 673 pm 26 text{ (stat.)} pm 59 text{ (sys.)}$,mb.
Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detectors sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argo n and neon, which are target materials of interest to the dark matter community, were previously unavailable. Purpose: Measure the differential cross section for elastic scattering of neutrons from argon and neon in the energy range relevant to backgrounds from (alpha,n) reactions in direct dark matter searches. Method: Cross-section data were taken at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. These data were fit using the spherical optical model. Results: The differential cross section for elastic scatting of neutrons from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model parameters for the elastic scattering reactions were determined from the best fit to these data. The total elastic scattering cross section for neon was found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model predictions. Compared to a local optical-model for 40Ar, the elastic scattering cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions: These new data are important for improving Monte-Carlo simulations and background estimates for direct dark matter searches and for benchmarking optical models of neutron elastic scattering from these nuclei.
70 - H. Dai , M. Murphy , V. Pandey 2018
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima ted. In the E12-14-012 experiment at Jefferson Lab Hall A, we have studied the properties of the argon nucleus by scattering a high-quality electron beam off a high-pressure gaseous argon target. Here, we present the measured $^{40}$Ar$(e,e^{prime})$ double differential cross section at incident electron energy $E=2.222$~GeV and scattering angle $theta = 15.541^circ$. The data cover a broad range of energy transfers, where quasielastic scattering and delta production are the dominant reaction mechanisms. The result for argon is compared to our previously reported cross sections for titanium and carbon, obtained in the same kinematical setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا