ﻻ يوجد ملخص باللغة العربية
The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in $^3$He($e,e^{prime}pi^{pm}$)$X$ have been measured for the first time in Jefferson Lab experiment E06-010 performed with a $5.9,$GeV $e^-$ beam on a $^3$He target. The experiment focuses on the valence quark region, covering a kinematic range $0.12 < x_{bj} < 0.45$, $1 < Q^2 < 4 , textrm{(GeV/c)}^2$, $0.45 < z_{h} < 0.65$, and $0.05 < P_t < 0.55 , textrm{GeV/c}$. The extracted SIDIS differential cross sections of $pi^{pm}$ production are compared with existing phenomenological models while the $^3$He nucleus approximated as two protons and one neutron in a plane wave picture, in multi-dimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.
Measurements of polarized neutron--polarized $^3$He scattering are reported. The target consisted of cryogenically-polarized solid $^3$He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences $De
The total cross section of 12C(alpha,gamma)16O was measured for the first time by a direct and ungated detection of the 16O recoils. This measurement in inverse kinematics using the recoil mass separator ERNA in combination with a windowless He gas t
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detectors sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argo
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima