ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System

54   0   0.0 ( 0 )
 نشر من قبل Joshua N. Winn
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

We present high resolution near-infrared spectropolarimetric observations using the SPIRou instrument at CFHT during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at IRTF. We detect Zeeman si gnatures in the Stokes V profiles, and measure a mean longitudinal magnetic field of $overline{B}_ell=46.3pm0.7$~G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of $d{B_ell}/dt=-108.7pm7.7$~G/d. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and $B_ell$, which allows us to estimate the radial velocity variations which stellar activity induces through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of $lambda=0^{+18}_{-15}$ degrees. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved to the current debris disk around AU Mic.
163 - G. Hebrard , F. Bouchy , F. Pont 2008
The transiting extrasolar planet XO-3b is remarkable, with a high mass and eccentric orbit. The unusual characteristics make it interesting to test whether its orbital plane is parallel to the equator of its host star, as it is observed for other tra nsiting planets. We performed radial velocity measurements of XO-3 with the SOPHIE spectrograph at the 1.93-m telescope of Haute-Provence Observatory during a planetary transit, and at other orbital phases. This allowed us to observe the Rossiter-McLaughlin effect and, together with a new analysis of the transit light curve, to refine the parameters of the planet. The unusual shape of the radial velocity anomaly during the transit provides a hint for a nearly transverse Rossiter-McLaughlin effect. The sky-projected angle between the planetary orbital axis and the stellar rotation axis should be lambda = 70 +/- 15 degrees to be compatible with our observations. This suggests that some close-in planets might result from gravitational interaction between planets and/or stars rather than migration due to interaction with the accretion disk. This surprising result requires confirmation by additional observations, especially at lower airmass, to fully exclude the possibility that the signal is due to systematic effects.
In an effort to measure the Rossiter-McLaughlin effect for the TRAPPIST-1 system, we performed high-resolution spectroscopy during transits of planets e, f, and b. The spectra were obtained with the InfraRed Doppler spectrograph on the Subaru 8.2-m t elescope, and were supplemented with simultaneous photometry obtained with a 1-m telescope of the Las Cumbres Observatory Global Telescope. By analyzing the anomalous radial velocities, we found the projected stellar obliquity to be $lambda=1pm 28$ degrees under the assumption that the three planets have coplanar orbits, although we caution that the radial-velocity data show correlated noise of unknown origin. We also sought evidence for the expected deformations of the stellar absorption lines, and thereby detected the Doppler shadow of planet b with a false alarm probability of $1.7,%$. The joint analysis of the observed residual cross-correlation map including the three transits gave $lambda=19_{-15}^{+13}$ degrees. These results indicate that the the TRAPPIST-1 star is not strongly misaligned with the common orbital plane of the planets, although further observations are encouraged to verify this conclusion.
We present photometry of 4 transits of the exoplanet WASP-4b, each with a precision of approximately 500 ppm and a time sampling of 40-60s. We have used the data to refine the estimates of the system parameters and ephemerides. During two of the tran sits we observed a short-lived, low-amplitude anomaly that we interpret as the occultation of a starspot by the planet. We also find evidence for a pair of similar anomalies in previously published photometry. The recurrence of these anomalies suggests that the stellar rotation axis is nearly aligned with the orbital axis, or else the star spot would not have remained on the transit chord. By analyzing the timings of the anomalies we find the sky-projected stellar obliquity to be -1_{-12}^{+14} degrees. This result is consistent with (and more constraining than) a recent observation of the Rossiter-McLaughlin effect. It suggests that the planet migration mechanism preserved the initially low obliquity, or else that tidal evolution has realigned the system. Future applications of this method using data from the Corot and Kepler missions will allow spin-orbit alignment to be probed for many other exoplanets.
171 - I. H. Stairs 2004
In relativistic gravity, a spinning pulsar will precess as it orbits a compact companion star. We have measured the effect of such precession on the average shape and polarization of the radiation from PSR B1534+12. We have also detected, with limite d precision, special-relativistic aberration of the revolving pulsar beam due to orbital motion. Our observations fix the system geometry, including the misalignment between the spin and orbital angular momenta, and yield a measurement of the precession timescale consistent with the predictions of General Relativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا