ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation and Dust Attenuation Properties in Galaxies from a Statistical UV-to-FIR Analysis

215   0   0.0 ( 0 )
 نشر من قبل Denis Burgarella
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two galaxy samples selected in ultraviolet (UV) and in far-infrared (FIR) for which the spectral energy distributions (SEDs) from the far UV (FUV) to the FIR are available. We compare the observed SEDs to modelled SEDs with several star formation histories (SFHs; decaying star formation rate plus burst) and attenuation laws (power law + 2175 Angstroem bump). The Bayesian method allows to estimate statistically the best parameters by comparing each observed SED to the full set of 82800 models. We reach the conclusion that the UV dust attenuation cannot be estimated correctly from an SED analysis if the FIR information is not used. The deduced dispersion is larger than with the FIR data and the distribution is not symetrically distributed about zero: there is an over-estimation for UV-selected galaxies and an under-estimation for FIR-selected galaxies. The output from the analysis process suggests that UV-selected galaxies have attenuation laws in average similar to the LMC extinction while FIR-selected galaxy attenuation laws more resemble the MW extinction law. The dispersion about the average relation in the Log(Fdust/Ffuv) vs. FUV-NUV diagram (once the main relation with FUV-NUV is accounted for) is explained by two other parameters: the slope of the attenuation law and the instantaneous birthrate parameter b_0 for UV-selected galaxies and the same ones plus the strength of the bump for the FIR-selected galaxies. We propose a recipe to estimate the UV dust attenuation for UV-galaxies only (that should be used whenever the FIR information is not available because the resulting Afuv is poorly defined with an uncertainty of about 0.32): A_{FUV} = 1.4168 (FUV-NUV)^2 + 0.3298 (NUV-I)^2 + 2.1207 (FUV-NUV) + 2.7465 (NUV-I) + 5.8408

قيم البحث

اقرأ أيضاً

We study the link between observed ultraviolet luminosity, stellar mass, and dust attenuation within rest-frame UV-selected samples at z~ 4, 3, and 1.5. We measure by stacking at 250, 350, and 500 um in the Herschel/SPIRE images from the HerMES progr am the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate and stellar mass at z~ 4, 3, and 1.5. The star formation rate-stellar mass relations are well described by power laws (SFR~ M^0.7), with the amplitudes being similar at z~4 and z~3, and decreasing by a factor of 4 at z~1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific star formation rate. Our results are in the upper range of previous measurements, in particular at z~3, and are consistent with a plateau at 3<z<4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the Main Sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5<z<4) stay around 1 Gyr on the Main Sequence. With decreasing redshift, this time increases such that z=1 Main Sequence galaxies with 10^8<M_*/Msun<10^10 stay on the Main Sequence until z=0.
We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.
We use deep panchromatic datasets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared and VLA radio continuum imaging, to explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation of sta r-forming galaxies to z~4. Our main results can be summarized as follows: i) the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while its normalization keeps increasing with redshift; ii) for the first time here we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated, strikingly we find that this attenuation relation evolves very weakly with redshift, the amount of dust attenuation increasing by less than 0.3 magnitudes over the redshift range [0.5-4] for a fixed stellar mass, as opposed to a tenfold increase of star formation rate; iv) the correlation between dust attenuation and the UV spectral slope evolves in redshift, with the median UV spectral slope of star-forming galaxies becoming bluer with redshift. By z~3, typical UV slopes are inconsistent, given the measured dust attenuation, with the predictions of commonly used empirical laws. Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than stellar reddening at all redshifts probed, and also that the amount of dust attenuation at a fixed ISM metallicity increases with redshift. We speculate that our results support evolving ISM conditions of typical star-forming galaxies such that at z~1.5 Main Sequence galaxies have ISM conditions getting closer to those of local starbursts.
We investigate the dependence of the total-infrared (TIR) to UV luminosity ratio method for calculating the UV dust attenuation A(UV) from the age of the underlying stellar populations by using a library of spectral energy distributions for galaxies with different star formation histories. Our analysis confirms that the TIR/UV vs. A(UV) relation varies significantly with the age of the underlying stellar population: i.e. for the same TIR/UV ratio, systems with low specific star formation rate (SSFR) suffer a lower UV attenuation than starbursts. Using a sample of nearby field and cluster spiral galaxies we show that the use of a standard (i.e. age independent) TIR/UV vs. A(UV) relation leads to a systematic overestimate up to 2 magnitudes of the amount of UV dust attenuation suffered by objects with low SSFR and in particular HI-deficient star forming cluster galaxies. This result points out that the age independent $TIR/UV$ vs. $A(UV)$ relation cannot be used to study the UV properties of large samples of galaxies including low star-forming systems and passive spirals. Therefore we give some simple empirical relations from which the UV attenuation can be estimated taking into account its dependence on the age of the stellar populations, providing a less biased view of UV properties of galaxies.
105 - C.M. Casey 2014
Galaxies rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies sele cted at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500,$mu$m in the COSMOS field, in particular making use of {it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($beta$) and ratio of infrared-to-ultraviolet emission ($L_{rm IR}/L_{rm UV}equiv,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$gt$50,M$_odot$,yr$^{-1}$ deviate from the nominal $IRX-beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $ll1$% at $zlt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$,M$_odot$,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $zsim2$ exhibit steady-state star formation in secular disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا