ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the cluster X-ray scaling relations in the WARPS sample at 0.6<z<1.0

73   0   0.0 ( 0 )
 نشر من قبل Ben Maughan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. J. Maughan




اسأل ChatGPT حول البحث

The X-ray properties of a sample of 11 high-redshift (0.6<z<1.0) clusters observed with Chandra and/or XMM are used to investigate the evolution of the cluster scaling relations. The observed evolution of the L-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the universe at their redshift of observation. When the systematic effect of assuming isothermality on the derived masses of the high-redshift clusters is taken into account, the high-redshift M-T and Mgas-T relations are also consistent with self-similar evolution. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having formed at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high-redshift (B=3.29+/-0.38) is consistent with the local relation, and significantly steeper then the self-similar prediction of B=2. This suggests that the non-gravitational processes causing the steepening occurred at z>1 or in the early stages of the clusters formation, prior to their observation. The properties of the intra-cluster medium at high-redshift are found to be similar to those in the local universe. The mean surface-brightness profile slope for the sample is 0.66+/-0.05, the mean gas mass fractions within R2500 and R200 are 0.073+/-0.010 and 0.12+/-0.02 respectively, and the mean metallicity of the sample is 0.28+/-0.16 solar.



قيم البحث

اقرأ أيضاً

145 - C. J. Short 2010
We use numerical simulations to investigate, for the first time, the joint effect of feedback from supernovae (SNe) and active galactic nuclei (AGN) on the evolution of galaxy cluster X-ray scaling relations. Our simulations are drawn from the Millen nium Gas Project and are some of the largest hydrodynamical N-body simulations ever carried out. Feedback is implemented using a hybrid scheme, where the energy input into intracluster gas by SNe and AGN is taken from a semi-analytic model of galaxy formation. This ensures that the source of feedback is a population of galaxies that closely resembles that found in the real universe. We show that our feedback model is capable of reproducing observed local X-ray scaling laws, at least for non-cool core clusters, but that almost identical results can be obtained with a simplistic preheating model. However, we demonstrate that the two models predict opposing evolutionary behaviour. We have examined whether the evolution predicted by our feedback model is compatible with observations of high-redshift clusters. Broadly speaking, we find that the data seems to favour the feedback model for z<0.5, and the preheating model at higher redshift. However, a statistically meaningful comparison with observations is impossible, because the large samples of high-redshift clusters currently available are prone to strong selection biases. As the observational picture becomes clearer in the near future, it should be possible to place tight constraints on the evolution of the scaling laws, providing us with an invaluable probe of the physical processes operating in galaxy clusters.
We present the results of Chandra observations of 13 optically-selected clusters with 0.6<z< 1.1, discovered via the Red-sequence Cluster Survey (RCS). All but one are detected at S/N>3; though 3 were not observed long enough to support detailed anal ysis. Surface brightness profiles are fit to beta-models. Integrated spectra are extracted within R(2500), and Tx and Lx information is obtained. We derive gas and total masses within R(2500) and R(500). Cosmologically corrected scaling relations are investigated, and we find the RCS clusters to be consistent with self-similar scaling expectations. However discrepancies exist between the RCS sample and lower-z X-ray selected samples for relationships involving Lx, with the higher-z RCS clusters having lower Lx for a given Tx. In addition, we find that gas mass fractions within R(2500) for the high-z RCS sample are lower than expected by a factor of ~2. This suggests that the central entropy of these high-z objects has been elevated by processes such as pre-heating, mergers, and/or AGN outbursts, that their gas is still infalling, or that they contain comparatively more baryonic matter in the form of stars. Finally, relationships between red-sequence optical richness (Bgc) and X-ray properties are fit to the data. For systems with measured Tx, we find that optical richness correlates with both Tx and mass, having a scatter of ~30% with mass for both X-ray and optically-selected clusters. However we also find that X-ray luminosity is not well correlated with richness, and that several of our sample appear to be significantly X-ray faint.
We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are u sed to study the evolution of the Tully-Fisher, velocity-size and stellar mass-angular momentum relations in dense environments over cosmic time. We use 2D and 3D spectroscopy to analyze the kinematics of our cluster galaxies and extract their maximum rotation velocities (Vmax). Our methods are consistently applied to all our cluster samples which make them ideal for an evolutionary comparison. Up to redshift one, our cluster samples show evolutionary trends compatible with previous observational results in the field and in accordance with semianalytical models and hydrodynamical simulations concerning the Tully-Fisher and velocity-size relations. However, we find a factor 3 drop in disk sizes and an average B-band luminosity enhancement of 2 mag by z=1.5. We discuss the role that different cluster-specific interactions may play in producing this observational result. In addition, we find that our intermediate-to-high redshift cluster galaxies follow parallel sequences with respect to the local specific angular momentum-stellar mass relation, although displaying lower angular momentum values in comparison with field samples at similar redshifts. This can be understood by the stronger interacting nature of dense environments with respect to the field.
The WARPS team reviews the properties and history of discovery of ClJ0152.7-1357, an X-ray luminous, rich cluster of galaxies at z=0.833. At L_X = 8 x 10^44 h^(-2) erg/s (0.5-2.0 keV) ClJ0152.7-1357 is the most X-ray luminous cluster known at redshif ts z>0.55. The high X-ray luminosity of the system suggests that massive clusters may begin to form at redshifts considerably greater than unity. This scenario is supported by the high degree of optical and X-ray substructure in ClJ0152.7-1357, which is similarly complex as that of other X-ray selected distant clusters and consistent with the picture of cluster formation by mass infall along large-scale filaments. X-ray emission from ClJ0152.7-1357 was detected already in 1980 with the EINSTEIN IPC. However, because the complex morphology of the emission caused its significance to be underestimated, the corresponding source was not included in the EMSS cluster sample and hence not previously identified. Simulations of the EMSS source detection and selection procedure suggest a general bias of the EMSS against X-ray luminous clusters with pronounced substructure. If highly unrelaxed, merging clusters are common at high redshift, they could create a bias in some samples as the morphological complexity of mergers may cause them to fall below the flux limit of surveys that assume a unimodal spatial source geometry. Conversely, the enhanced X-ray luminosity of mergers might cause them to, temporarily, rise above the flux limit. Either effect could lead to erroneous conclusions about the evolution of the comoving cluster space density. A high fraction of morphologically complex clusters at high redshift would also call into question the validity of cosmological studies that assume that the systems under investigation are virialized.
(Abridged) We examine the X-ray luminosity scaling relations of 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The objects are selected in X-ray luminosity only, optimally sampling the cluster luminos ity function; temperatures range from 2 to 9 keV and there is no bias toward any particular morphological type. Pertinent values are extracted in an aperture corresponding to R_500, estimated using the tight correlation between Y_X and total mass. The data exhibit power law relations between bolometric X-ray luminosity and temperature, Y_X and total mass, all with slopes that are significantly steeper than self-similar expectations. We examine the causes for the steepening, finding that the primary driver appears to be a systematic variation of the gas content with mass. Scatter about the relations is dominated in all cases by the presence of cool cores. The natural logarithmic scatter about the raw X-ray luminosity-temperature relation is about 70%, and about the X-ray luminosity-Y_X relation it is 40%. Cool core and morphologically disturbed systems occupy distinct regions in the residual space with respect to the best fitting mean relation, the former lying systematically to the high luminosity side, the latter to the low luminosity side. Exclusion of the central regions serves to reduce the scatter by more than 50%. Using Y_X as a mass proxy, we derive a Malmquist bias corrected luminosity-mass relation and compare with previous determinations. Our results indicate that luminosity can be a reliable mass proxy with controllable scatter, which has important implications for upcoming all-sky cluster surveys, such as those to be undertaken with Planck and eROSITA, and ultimately for the use of clusters for cosmological purposes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا