ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Observations of RR Lyrae variables in Galactic Globular Clusters: I. The case of M92

72   0   0.0 ( 0 )
 نشر من قبل Milena Del Principe
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Del Principe




اسأل ChatGPT حول البحث

We present near-infrared J,H, and K-band time series observations of the Galactic Globular Cluster (GGC) M92. On the basis of these data, we derived well-sampled light curves for eleven out of the seventeen cluster RR Lyrae variables, and in turn, accurate mean near-infrared (NIR) magnitudes. The comparison between predicted and empirical slopes of NIR Period-Luminosity (PL) relations indicates a very good agreement. Cluster distance determinations based on independent theoretical NIR $PL$ relations present uncertainties smaller than 5% and agree quite well with recent distance estimates based on different distance indicators. We also obtained accurate and deep NIR color-magnitude diagrams (CMDs) ranging from the tip of the Red Giant Branch (RGB) down to the Main Sequence Turn-Off. We detected the RGB bump and the NIR luminosities of this evolutionary feature are, within theoretical and empirical uncertainties, in good agreement with each other.

قيم البحث

اقرأ أيضاً

39 - M. Marconi 2003
We present predicted relations connecting pulsational and evolutionary parameters, as based on a wide set of convective pulsating models of RR Lyrae stars with Z=0.001, Y=0.24 and mass and luminosity suitable for the ``old (age $>$ 8 Gyr) variables o bserved in globular clusters. The relations are collated with sound constraints on the mass of pulsators, as inferred from up-to-date evolutionary models of horizontal branch stars, in order to provide a self-consistent theoretical framework for the analysis of observed variables. The theoretical predictions are tested through a detailed comparison with measurements of RR Lyrae stars in the globular cluster M3. We show that the predicted relations satisfy a variety of observed data, thus providing a pulsational route to the determination of accurate distances to RR Lyrae-rich globular clusters with intermediate metal content. We discuss the effect of different physical inputs in evolutionary computations, as well as of different bolometric corrections adopted to convert bolometric luminosity into absolute magnitude. We show that the constraints inferred by pulsation theory support the large value of the mixing-length parameter adopted to fit observed RGB, but, at the same time, they would yield that the luminosity of updated HB models is too bright. Such discrepancy is significantly reduced if element diffusion is properly taken into account.
We present new near-infrared ($JHK_s$) time-series observations of RR Lyrae variables in the Messier 3 (NGC 5272) globular cluster using the WIRCam instrument at the 3.6-m Canada France Hawaii Telescope. Our observations cover a sky area of $sim 21ti mes 21$ around the cluster center and provide an average of twenty epochs of homogeneous $JHK_s$-band photometry. New homogeneous photometry is used to estimate robust mean magnitudes for 175 fundamental-mode (RRab), 47 overtone-mode (RRc), and 11 mixed-mode (RRd) variables. Our sample of 233 RR Lyrae variables is the largest thus far obtained in a single cluster with time-resolved, multi-band near-infrared photometry. Near-infrared to optical amplitude ratios for RR Lyrae in Messier 3 exhibit a systematic increase moving from RRc to short-period ($P < 0.6$~days) and long-period ($P gtrsim 0.6$~days) RRab variables. We derive $JHK_s$-band Period--Luminosity relations for RRab, RRc, and the combined sample of variables. Absolute calibrations based on the theoretically predicted Period--Luminosity--Metallicity relations for RR Lyrae stars yield a distance modulus, $mu = 15.041 pm 0.017~(textrm{statistical}) pm 0.036~(textrm{systematic})$~mag, to Messier 3. When anchored to trigonometric parallaxes for nearby RR Lyrae stars from the {it Hubble Space Telescope} and the {it Gaia} mission, our distance estimates are consistent with those resulting from the theoretical calibrations, albeit with relatively larger systematic uncertainties.
100 - V. F. Braga (1 , 2 , 3 2018
We present a new complete Near-Infrared (NIR, $JHK_s$) census of RR Lyrae stars (RRLs) in the globular $omega$ Cen (NGC 5139). We collected 15,472 $JHK_s$ images with 4-8m class telescopes over 15 years (2000-2015) covering a sky area around the clus ter center of 60x34 arcmin$^2$. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with ten to sixty measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 ($J$), 176 ($H$) and 174 ($K_s$) RRLs. These data were supplemented with single-epoch $JK_s$ magnitudes from VHS and with single-epoch $H$ magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide $JHK_s$ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed--mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted Period-Luminosity-Metallicity relations, we derive a true distance modulus of 13.674$pm$0.008$pm$0.038 mag (statistical error and standard deviation of the median)---based on spectroscopic iron abundances---and of 13.698$pm$0.004$pm$0.048 mag---based on photometric iron abundances. We also found evidence of possible systematics at the 5-10% level in the zero-point of the PLs based on the five calibrating RRLs whose parallaxes had been determined with HST
55 - G. Clementini 2001
The purpose of this paper is to show that RR Lyrae variables exist and can be detected in M31 globular clusters. We report on the first tentative identification of RR Lyrae candidates in four globular clusters of the Andromeda galaxy, i.e. G11, G33, G64 and G322. Based on HST-WFPC2 archive observations in the F555W and F814W filters spanning a total interval of about 5 consecutive hours we find evidence for 2, 4, 11 and 8 RR Lyrae variables of both ab and c Bailey types in G11, G33, G64 and G322, respectively. Several more candidates can be found by relaxing slightly the selection criteria. These numbers are quite consistent with the horizontal branch morphology exhibited by the four clusters, starting from the very blue HB in G11, and progressively moving to redder HBs in G64, G33 and G322.
81 - V.F. Braga 2018
We provide homogeneous optical (UBVRI) and near-infrared (JHK) time series photometry for 254 cluster (omega Cen, M4) and field RR Lyrae (RRL) variables. We ended up with more than 551,000 measurements. For 94 fundamental (RRab) and 51 first overtone s (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new and accurate light-curve templates for both RRc (single period bin) and RRab (three period bins) variables. The templates for the J and the H band are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier series, Periodic Gaussian functions). The new templates were validated by using 26 omega Cen and Bulge RRLs covering the four period bins. We found that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag (sigma=0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. The accuracy of the mean magnitudes is ~0.01 mag (sigma=0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular Reticulum and by using literature data and predicted PLZ relations we found true distance moduli of 18.47+-0.10+-0.03 mag (J) and 18.49+-0.09+-0.05 mag (K). We also used literature optical and mid-infrared data and we found a mean true distance modulus of 18.47+-0.02+-0.06 mag, suggesting that Reticulum is ~1 kpc closer than the LMC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا