ترغب بنشر مسار تعليمي؟ اضغط هنا

New Near-Infrared $JHK_s$ light-curve templates for RR Lyrae variables

82   0   0.0 ( 0 )
 نشر من قبل Vittorio Francesco Braga
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.F. Braga




اسأل ChatGPT حول البحث

We provide homogeneous optical (UBVRI) and near-infrared (JHK) time series photometry for 254 cluster (omega Cen, M4) and field RR Lyrae (RRL) variables. We ended up with more than 551,000 measurements. For 94 fundamental (RRab) and 51 first overtones (RRc) we provide a complete optical/NIR characterization (mean magnitudes, luminosity amplitudes, epoch of the anchor point). The NIR light curves of these variables were adopted to provide new and accurate light-curve templates for both RRc (single period bin) and RRab (three period bins) variables. The templates for the J and the H band are newly introduced, together with the use of the pulsation period to discriminate among the different RRab templates. To overcome subtle uncertainties in the fit of secondary features of the light curves we provide two independent sets of analytical functions (Fourier series, Periodic Gaussian functions). The new templates were validated by using 26 omega Cen and Bulge RRLs covering the four period bins. We found that the difference between the measured mean magnitude along the light curve and the mean magnitude estimated by using the template on a single randomly extracted phase point is better than 0.01 mag (sigma=0.04 mag). We also validated the template on variables for which at least three phase points were available, but without information on the phase of the anchor point. The accuracy of the mean magnitudes is ~0.01 mag (sigma=0.04 mag). The new templates were applied to the Large Magellanic Cloud (LMC) globular Reticulum and by using literature data and predicted PLZ relations we found true distance moduli of 18.47+-0.10+-0.03 mag (J) and 18.49+-0.09+-0.05 mag (K). We also used literature optical and mid-infrared data and we found a mean true distance modulus of 18.47+-0.02+-0.06 mag, suggesting that Reticulum is ~1 kpc closer than the LMC.



قيم البحث

اقرأ أيضاً

150 - G. Hajdu , M. Catelan (1 2015
Despite their importance, very few RR Lyrae (RRL) stars have been known to reside in binary systems. We report on a search for binary RRL in the OGLE-III Galactic bulge data. Our approach consists in the search for evidence of the light-travel time e ffect in so-called observed minus calculated ($O-C$) diagrams. Analysis of 1952 well-observed fundamental-mode RRL in the OGLE-III data revealed an initial sample of 29 candidates. We used the recently released OGLE-IV data to extend the baselines up to 17 years, leading to a final sample of 12 firm binary candidates. We provide $O-C$ diagrams and binary parameters for this final sample, and also discuss the properties of 8 additional candidate binaries whose parameters cannot be firmly determined at present. We also estimate that $gtrsim 4$ per cent of the RRL reside in binary systems.
We present a detailed light curve analysis of RR Lyrae variables at multiple wavelengths using Fourier decomposition method. The time-series data for RR Lyrae variables in the Galactic bulge and the Magellanic Clouds are taken from the Optical Gravit ational Lensing Experiment survey while the infrared light curves are compiled from the literature. We also analyse the multiband theoretical light curves that are generated from the stellar pulsation models of RR Lyrae stars for a wide range of metal-abundances. We find that the theoretical light curve parameters with different metal abundances are consistent with observed parameters in most period bins at both optical and infrared wavelengths. The theoretical and observed Fourier amplitude parameters decrease with increase in wavelength while the Fourier phase parameters increase with wavelength at a given period. We use absolute magnitudes for a subset of theoretical models that fit the observed optical RR Lyrae light curves in the Large Magellanic Cloud to estimate a distance modulus, $mu_textrm{LMC}=18.51pm0.07$, independent of the metallicity. We also use Fourier analysis to study the period-color and amplitude-color relations for RR Lyrae stars in the Magellanic Clouds using optical data and find that the slope of period-color relation at minimum light is very shallow or flat and becomes increasingly significant at the maximum light for RRab stars. We also find that the metallicity dependence of the period-color relations increases as we go from minimum to maximum light, suggesting that the mean light results are indeed an average of the various pulsational phases. We summarize that the average variation in these relations is consistent between theory and observations and supports the theory of the interaction of the stellar photosphere and the hydrogen ionization front.
113 - L. Inno 2014
We present new near-infrared (NIR) light-curve templates for fundamental (FU, JHK) and first overtone (FO, J) Cepheids. The new templates together with PL and PW relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted. The templates rely on a very large set of Galactic and Magellanic Clouds (MCs) Cepheids (FU,~600; FO,~200) with well sampled NIR (IRSF data) and optical (V,I; OGLE data) light curves. To properly trace the change in the shape of the light curve as a function of period, we split the sample of calibrating Cepheids into 10 different period bins. The templates for the first time cover FO Cepheids and the FU short-period Cepheids (P<5 days). Moreover, the zero-point phase is anchored to the phase of the mean magnitude along the rising branch. The new approach has several advantages in sampling the light curve of bump Cepheids when compared with the phase of maximum light. We also provide new estimates of the NIR-to-optical amplitude ratios for FU and FO Cepheids. We perform detailed analytical fits using both 7th-order Fourier series and multi-Gaussian periodic functions. The latter are characterized by a smaller number of free parameters (9 vs 15). Mean NIR magnitudes based on the new templates are up to 80% more accurate than single-epoch measurements and up to 50% more accurate than mean magnitudes based on previous templates, with typical associated uncertainties ranging from 0.015 mag (J) to 0.019 mag (K). Moreover, the errors on individual distances of Small MC Cepheids derived from NIR PW relations, are essentially reduced to the intrinsic scatter of the adopted relations. Thus, the new templates are the ultimate tool to estimate precise Cepheid distances from NIR single-epoch observations, which can be adopted to derive the 3D structure of the MCs.
100 - V. F. Braga (1 , 2 , 3 2018
We present a new complete Near-Infrared (NIR, $JHK_s$) census of RR Lyrae stars (RRLs) in the globular $omega$ Cen (NGC 5139). We collected 15,472 $JHK_s$ images with 4-8m class telescopes over 15 years (2000-2015) covering a sky area around the clus ter center of 60x34 arcmin$^2$. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with ten to sixty measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 ($J$), 176 ($H$) and 174 ($K_s$) RRLs. These data were supplemented with single-epoch $JK_s$ magnitudes from VHS and with single-epoch $H$ magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide $JHK_s$ magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed--mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P>0.7 days) fundamental RRLs. Using predicted Period-Luminosity-Metallicity relations, we derive a true distance modulus of 13.674$pm$0.008$pm$0.038 mag (statistical error and standard deviation of the median)---based on spectroscopic iron abundances---and of 13.698$pm$0.004$pm$0.048 mag---based on photometric iron abundances. We also found evidence of possible systematics at the 5-10% level in the zero-point of the PLs based on the five calibrating RRLs whose parallaxes had been determined with HST
We present results from a comparative study of light curves of Cepheid and RR Lyrae stars in the Galaxy and the Magellanic Clouds with their theoretical models generated from the stellar pulsation codes. Fourier decomposition method is used to analys e the theoretical and the observed light curves at multiple wavelengths. In case of RR Lyrae stars, the amplitude and Fourier parameters from the models are consistent with observations in most period bins except for low metal-abundances ($Z<0.004$). In case of Cepheid variables, we observe a greater offset between models and observations for both the amplitude and Fourier parameters. The theoretical amplitude parameters are typically larger than those from observations, except close to the period of $10$ days. We find that these discrepancies between models and observations can be reduced if a higher convective efficiency is adopted in the pulsation codes. Our results suggest that a quantitative comparison of light curve structure is very useful to provide constraints for the input physics to the stellar pulsation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا