ترغب بنشر مسار تعليمي؟ اضغط هنا

The Star Cluster Population in the Tidal Tails of NGC 6872

300   0   0.0 ( 0 )
 نشر من قبل Nate Bastian
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a photometric analysis of the rich star cluster population in the tidal tails of NGC 6872. We find star clusters with ages between 1 - 100 Myr distributed in the tidal tails, while the tails themselves have an age of less than 150 Myr. Most of the young massive ($10^{4} le M/M_{odot} le 10^{7}$) clusters are found in the outer regions of the galactic disk or the tidal tails. The mass distribution of the cluster population can be well described by power-law of the form $N(m) propto m^{-alpha}$, where $alpha = 1.85 pm 0.11$, in very good agreement with other young cluster populations found in a variety of different environments. We estimate the star formation rate for three separate regions of the galaxy, and find that the eastern tail is forming stars at $sim 2$ times the rate of the western tail and $sim 5$ times the rate of the main body of the galaxy. By comparing our observations with published N-body models of the fate of material in tidal tails in a galaxy cluster potential, we see that many of these young clusters will be lost into the intergalactic medium. We speculate that this mechanism may also be at work in larger galaxy clusters such as Fornax, and suggest that the so-called ultra-compact dwarf galaxies could be the most massive star clusters that have formed in the tidal tails of an ancient galactic merger.



قيم البحث

اقرأ أيضاً

We utilize the robust membership determination algorithm, ML-MOC, on the precise astrometric and deep photometric data from Gaia Early Data Release 3 within a region of radius 5$^{circ}$ around the center of the intermediate-age galactic open cluster NGC 752 to identify its member stars. We report the discovery of the tidal tails of NGC 752, extending out to $sim$35 pc on either side of its denser central region and following the cluster orbit. From comparison with PARSEC stellar isochrones, we obtain the mass function of the cluster with a slope, $chi=-1.26pm0.07$. The high negative value of $chi$ is indicative of a disintegrating cluster undergoing mass-segregation. $chi$ is more negative in the intra-tidal regions as compared to the outskirts of NGC 752. We estimate a present day mass of the cluster, M$rm_{C}=297pm10$ M$_{odot}$. Through mass-loss due to stellar evolution and tidal interactions, we further estimate that NGC 752 has lost nearly 95.2-98.5 % of its initial mass, $rm M_{i}~=~0.64~-2~times~10^{4}~M_{odot}$.
314 - M. Fellhauer 2007
The study of substructure in the stellar halo of the Milky Way has made a lot of progress in recent years, especially with the advent of surveys like the Sloan Digital Sky Survey. Here, we study the newly discovered tidal tails of the Galactic globul ar cluster NGC 5466. By means of numerical simulations, we reproduce the shape, direction and surface density of the tidal tails, as well as the structural and kinematical properties of the present-day NGC 5466. Although its tails are very extended in SDSS data (> 45 degrees), NGC 5466 is only losing mass slowly at the present epoch and so can survive for probably a further Hubble time. The effects of tides at perigalacticon and disc crossing are the dominant causes of the slow dissolution of NGC 5466, accounting for about 60 % of the mass loss over the course of its evolution. The morphology of the tails provides a constraint on the proper motion -- the observationally determined proper motion has to be refined (within the stated error margins) to match the location of the tidal tails.
We present results on the extra-tidal features of the Milky Way globular cluster NGC 7099, using deep gr photometry obtained with the Dark Energy Camera (DECam). We reached nearly 6 mag below the cluster Main Sequence (MS) turnoff, so that we dealt w ith the most suitable candidates to trace any stellar structure located beyond the cluster tidal radius. From star-by-star reddening corrected color-magnitude diagrams (CMDs) we defined four adjacent strips along the MS, for which we built the respective stellar density maps, once the contamination by field stars was properly removed. The resulting field star cleaned stellar density maps show a short tidal tail and some scattered debris. Such extra-tidal features are hardly detected when much shallower Gaia DR2 data sets are used and the same CMD field star cleaning procedure is applied. Indeed, by using 2.5 magnitudes below the cluster MS turnoff as the faintest limit (G < 20.5 mag), cluster members turned out to be distributed within the clusters tidal radius, and some hints for field star density variations are found across a circle of radius 3.5deg centered on the cluster and with similar CMD features as cluster stars. The proper motion distribution of these stars is distinguishable from that of the cluster, with some superposition, which resembles that of stars located beyond 3.5deg from the cluster center.
We report the discovery of tidal tails around the Galactic globular cluster NGC 7492, based on the Data Release 1 of the Pan-STARRS 1 survey. The tails were detected with a version of the matched filter technique applied to the $(g-r,r)$ and $(g-i,i) $ color-magnitude diagrams. Tidal tails emerging from the cluster extend at least $sim$3.5 degrees in the North-East to South-East direction, equivalent to $sim1.5$ kpc in projected length.
Based on recent findings of a formation mechanism of substructure in tidal tails by Kuepper, Macleod & Heggie (2008) we investigate a more comprehensive set of N-body models of star clusters on orbits about a Milky-Way-like potential. We find that th e predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up. The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case. We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disk shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark-matter sub-structures in the haloes of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا