ترغب بنشر مسار تعليمي؟ اضغط هنا

The elusive tidal tails of the Milky Way globular cluster NGC 7099

101   0   0.0 ( 0 )
 نشر من قبل Andr\\'es E. Piatti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results on the extra-tidal features of the Milky Way globular cluster NGC 7099, using deep gr photometry obtained with the Dark Energy Camera (DECam). We reached nearly 6 mag below the cluster Main Sequence (MS) turnoff, so that we dealt with the most suitable candidates to trace any stellar structure located beyond the cluster tidal radius. From star-by-star reddening corrected color-magnitude diagrams (CMDs) we defined four adjacent strips along the MS, for which we built the respective stellar density maps, once the contamination by field stars was properly removed. The resulting field star cleaned stellar density maps show a short tidal tail and some scattered debris. Such extra-tidal features are hardly detected when much shallower Gaia DR2 data sets are used and the same CMD field star cleaning procedure is applied. Indeed, by using 2.5 magnitudes below the cluster MS turnoff as the faintest limit (G < 20.5 mag), cluster members turned out to be distributed within the clusters tidal radius, and some hints for field star density variations are found across a circle of radius 3.5deg centered on the cluster and with similar CMD features as cluster stars. The proper motion distribution of these stars is distinguishable from that of the cluster, with some superposition, which resembles that of stars located beyond 3.5deg from the cluster center.



قيم البحث

اقرأ أيضاً

We study the outer regions of the Milky Way globular cluster NGC6981 from publicly available $BV$ photometry and new Dark Energy Camera (DECam) observations, both reaching nearly 4 mag below the cluster main sequence (MS) turnoff. While the $BV$ data sets reveal the present of extra-tidal features around the cluster, the much larger field of view of DECam observations allowed us to identify some other tidal features, which extend from the cluster toward the opposite direction to the Milky Way center. These cluster structural features arise from stellar density maps built using MS stars, once the cluster color-magnitude diagram was cleaned from the contamination of field stars. We also performed $N$-body simulations in order to help us to understand the spatial distribution of the extra-tidal debris. The outcomes reveal the presenceof long trailing and leading tails mostly parallel to the direction of the cluster velocity vector. We found that the cluster has lost most of its mass by tidal disruption during its perigalactic passages, that lasted nearly 20 Myr each. Hence, a decrease in the density of escaping stars near the cluster is expected from our $N$-body simulations, which in turn means that stronger extra-tidal features could be found out by exploring much larger areas around NGC6891.
We report the discovery of tidal tails around the Galactic globular cluster NGC 7492, based on the Data Release 1 of the Pan-STARRS 1 survey. The tails were detected with a version of the matched filter technique applied to the $(g-r,r)$ and $(g-i,i) $ color-magnitude diagrams. Tidal tails emerging from the cluster extend at least $sim$3.5 degrees in the North-East to South-East direction, equivalent to $sim1.5$ kpc in projected length.
Using the Optimal Filter Technique applied to Sloan Digital Sky Survey photometry, we have found extended tails stretching about 1 degree (or several tens of half-light radii) from either side of the ultra-faint globular cluster Palomar 1. The tails contain roughly as many stars as does the cluster itself. Using deeper Hubble Space Telescope data, we see that the isophotes twist in a chacteristic S-shape on moving outwards from the cluster centre to the tails. We argue that the main mechanism forming the tails may be relaxation driven evaporation and that Pal 1 may have been accreted from a now disrupted dwarf galaxy ~500 Myr ago.
We utilize the robust membership determination algorithm, ML-MOC, on the precise astrometric and deep photometric data from Gaia Early Data Release 3 within a region of radius 5$^{circ}$ around the center of the intermediate-age galactic open cluster NGC 752 to identify its member stars. We report the discovery of the tidal tails of NGC 752, extending out to $sim$35 pc on either side of its denser central region and following the cluster orbit. From comparison with PARSEC stellar isochrones, we obtain the mass function of the cluster with a slope, $chi=-1.26pm0.07$. The high negative value of $chi$ is indicative of a disintegrating cluster undergoing mass-segregation. $chi$ is more negative in the intra-tidal regions as compared to the outskirts of NGC 752. We estimate a present day mass of the cluster, M$rm_{C}=297pm10$ M$_{odot}$. Through mass-loss due to stellar evolution and tidal interactions, we further estimate that NGC 752 has lost nearly 95.2-98.5 % of its initial mass, $rm M_{i}~=~0.64~-2~times~10^{4}~M_{odot}$.
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density map constructed with the optimal matched filter technique shows a nearly symmetrical and elongated distribution of stars on both sides of the cluster, forming a S-shape characteristic of mass loss. This evidence may be the telltale signature of tidal stripping in action. This, together with its large Galactocentric distance, imposes strong constraints on its orbit and/or origin: i) it must follow an external orbit confined to the peripheral region of the Galactic halo and/or ii) it formed in a satellite galaxy later accreted by the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا