ﻻ يوجد ملخص باللغة العربية
We present the results of a nonadiabatic, linear stability analysis of models of very low-mass stars (VLMSs) and brown dwarfs (BDs) during the deuterium burning phase in the center. We find unstable fundamental modes with periods varying between ~5 hr for a 0.1 Msun star and ~1 hr for a 0.02 Msun BD. The growth time of the instability decreases with decreasing mass and remains well below the deuterium burning time scale in the mass range considered (0.1--0.02 Msun). These results are robust against variations of the relevant input physics in the evolutionary models. We identify possible candidates for pulsational variability among known VLMSs and BDs in nearby star forming regions whose location in the HR diagram falls within or close to the boundary of the instability strip. Finally, we discuss the possibility that the variability observed in a few objects with periods of ~1 hr can be interpreted in terms of pulsation.
The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in sever
In order to understand the atmospheres as well as the formation mechanism of giant planets formed outside our solar system, the next decade will require an investment in studies of isolated young brown dwarfs. In this white paper we summarize the opp
Very low-mass stars and brown dwarfs can undergo pulsational instability excited by central deuterium burning during the initial phases of their evolution. We present the results of evolutionary and nonadiabatic linear stability models that show the
We present mid-infrared photometry of three very young brown dwarfs located in the $rho$ Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained with the Subaru 8-meter telescope. All three sources were detected at 8.6 and 11.7$mu$m, confirmin
We have combined new I, J, H, and Ks imaging of portions of the Chamaeleon II, Lupus I, and Ophiuchus star-forming clouds with 3.6 to 24 micron imaging from the Spitzer Legacy Program, From Molecular Clouds to Planet Forming Disks, to identify a samp