ترغب بنشر مسار تعليمي؟ اضغط هنا

Brown Dwarfs and Directly Imaged Exoplanets in Young Associations

166   0   0.0 ( 0 )
 نشر من قبل Jacqueline Faherty
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to understand the atmospheres as well as the formation mechanism of giant planets formed outside our solar system, the next decade will require an investment in studies of isolated young brown dwarfs. In this white paper we summarize the opportunity for discovery space in the coming decade of isolated brown dwarfs with planetary masses in young stellar associations within 150 pc. We suggest that next generation telescopes and beyond need to invest in characterizing young brown dwarfs in order to fully understand the atmospheres of sibling directly imaged exoplanets as well as the tail end of the star formation process.



قيم البحث

اقرأ أيضاً

162 - Michael C. Liu 2013
We have measured high-precision parallaxes for a large sample of candidate young (~10-100 Myr) and intermediate-age (~100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar e volution and ultracool atmospheres at lower surface gravities (i.e., masses) than most of the field population. We find that the absolute magnitudes of our young sample can be systematically offset from ordinary (older) field dwarfs, with the young late-M objects being brighter and the young/dusty mid-L (L3-L6.5) objects being fainter, especially at J band. Thus, we conclude the underluminosity of the young planetary-mass companions HR 8799b and 2MASS J1207-39b compared to field dwarfs is also manifested in young free-floating brown dwarfs, though the effect is not as extreme. At the same time, some young objects over the full spectral type range of our sample are similar to field objects, and thus a simple correspondence between youth and magnitude offset relative to the field population appears to be lacking. Comparing the kinematics of our sample to nearby stellar associations and moving groups, we identify several new moving group members, including the first free-floating L dwarf in the AB Dor moving group, 2MASS J0355+11. Altogether, the effects of surface gravity (age) and dust content on the magnitudes and colors of substellar objects appear to be degenerate.
We present detections of methane in R of $sim$1300, L band spectra of VHS 1256 b and PSO 318.5, two low gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1 256 b and PSO 318.5 have photospheres that are out of chemical equilibrium. Directly imaged exoplanets usually have redder near infrared colors than the field-age population of brown dwarfs on a color magnitude diagram. These objects along the L to T transition show reduced methane absorption and evidence of photospheric clouds. Compared to the H and K bands, L band (3 micron - 4 micron) spectroscopy provides stronger constraints on the methane abundances of brown dwarfs and directly imaged exoplanets that have similar effective temperatures as L to T transition objects. When combined with near infrared spectra, the L band extends our conventional wavelength coverage, increasing our understanding of atmospheric cloud structure. Our model comparisons show relatively strong vertical mixing and photospheric clouds can explain the molecular absorption features and continua of VHS 1256 b and PSO 318.5. We also discuss the implications of this work for future exoplanet focused instruments and observations with the James Webb Space Telescope.
185 - A. Sozzetti 2014
In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short per iods, respectively. Furthermore, thousands of detected ultra-cool dwarfs in the backyard of the Sun will have direct (absolute) distance estimates from Gaia, and for these Gaia astrometry will be of sufficient precision to reveal any orbiting companions with masses as low as that of Jupiter. Gaia observations thus bear the potential for critical contributions to many important questions in brown dwarfs astrophysics (how do they form in isolation and as companions to stars? Can planets form around them? What are their fundamental parameters such as ages, masses, and radii? What is their atmospheric physics?), and their connection to stars and planets. The full legacy potential of Gaia in the realm of brown dwarf science will be realized when combined with other detection and characterization programs, both from the ground and in space.
The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the syst ems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yields best fitting orbits for this system, which are eccentric (e between 0.21 and 0.69), but can not rule out circular orbits at high inclinations. Given our astrometry we discuss formation scenarios of the GQ Lup system. In addition, we detected an even fainter new companion candidate to GQ Lup, which is most likely a background object. We also updated the orbit constraints of the PZ Tel system, confirming that the companion is on a highly eccentric orbit with e > 0.62. Finally we show with a high significance, that there is no orbital motion observed in the cases of the DH Tau, HD 203030 and 1RXS J160929.1-210524 systems and give the most precise relative astrometric measurement of the UScoCTIO 108 system to date.
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases withthe degree of oblateness, which is inversely proportional to the surface gr avity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R-band using CAFOS at the 2.2 m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3$sigma$, our data indicate that all targets have a linear polarimetry degree in average below 0.69% in the I-band, and below 1.0% in the R-band, at the time they were observed. We detected significant (i.e. P/$sigma$ $le$ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R-band, with a degree of $mathrm{p^{*}}$ = 0.81 $pm$ 0.17 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا