ﻻ يوجد ملخص باللغة العربية
In order to understand the atmospheres as well as the formation mechanism of giant planets formed outside our solar system, the next decade will require an investment in studies of isolated young brown dwarfs. In this white paper we summarize the opportunity for discovery space in the coming decade of isolated brown dwarfs with planetary masses in young stellar associations within 150 pc. We suggest that next generation telescopes and beyond need to invest in characterizing young brown dwarfs in order to fully understand the atmospheres of sibling directly imaged exoplanets as well as the tail end of the star formation process.
We have measured high-precision parallaxes for a large sample of candidate young (~10-100 Myr) and intermediate-age (~100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar e
We present detections of methane in R of $sim$1300, L band spectra of VHS 1256 b and PSO 318.5, two low gravity, red, late L dwarfs that share the same colors as the HR 8799 planets. These spectra reveal shallow methane features, which indicate VHS 1
In its all-sky survey, Gaia will monitor astrometrically and photometrically millions of main-sequence stars with sufficient sensitivity to brown dwarf companions within a few AUs from their host stars and to transiting brown dwarfs on very short per
The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the syst
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases withthe degree of oblateness, which is inversely proportional to the surface gr