ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad band variability of SS433: Accretion disk at work?

55   0   0.0 ( 0 )
 نشر من قبل Revnivtsev Mikhail
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.Revnivtsev




اسأل ChatGPT حول البحث

We present broad band power spectra of variations of SS433 in radio, optical and X-ray spectral bands. We show that at frequencies lower than 1e-5 Hz the source demonstrates the same variability pattern in all these bands. The broad band power spectrum can be fitted by one power law down to frequencies ~1e-7 Hz with flattening afterwards. Such a flattening means that on time scales longer than ~1e7 sec the source variability becomes uncorrelated. This naturally leads to the appearance of quasi-poissonian flares in the source light curve, which have been regularly observed in radio and optical spectral bands. The radio flux power spectrum appears to have a second break at Fourier frequencies ~1e-5 Hz which can be caused by the smearing of the intrinsic radio variability on timescale of the light-crossing time of the radio emitting region. We find a correlation of the radio and optical fluxes of SS433 and the radio flux is delayed by about ~2 days with respect to the optical one. Power spectra of optical and X-ray variabilities continue with the same power law from 1e-7 Hz up to ~0.01-0.05 Hz. The broad band power spectrum of SS433 can be interpreted in terms of self-similar accretion rate modulations in the accretion disk proposed by Lyubarskii (1997) and elaborated by Churazov et al. (2001). We discuss a viscous time-scale in the accretion disk of SS433 in implication to the observed broad band power spectrum.



قيم البحث

اقرأ أيضاً

Based on multiyear INTEGRAL observations of SS433 in 2003-2011, a composite IBIS/ISGRI 18-60 keV orbital light curve is constructed around zero precessional phases psi_{pr}= 0 at the maximim accretion disk opening angle. It shows a peculiar shape wit h significant excess near the orbital phase phi_orb= 0.25, which is not seen in the softer 2-10 keV energy band. The 40-60 keV orbital light curve demonstrates two almost equal humps at phases sim 0.25 and sim 0.75, most likely due to nutation effects of the accretion disk. The nutational variability of SS433 in 15-50 keV with a period of 6.290 days is independently found from timing analysis of Swift/BAT data. The change of the off-eclipse 18-60 keV X-ray flux with the precessional phase shows a double-wave form with strong primary maximum at psi_{pr}= 0 and weak but significant secondary maximum at psi_{pr}= 0.6. A weak variability of the 18-60 keV flux in the middle of the orbital eclipse correlated with the disk precessional phase is also observed. The joint analysis of the broadband 18-60 keV orbital and precessional light curves confirms the presence of a hot extended corona in the central parts of the supercritical accretion disk and constrains the binary mass ratio in SS433 in the range 0.5>q>0.3, suggesting the black hole nature of the compact object.
We study power density spectra (PDS) of X-ray flux variability in binary systems where the accretion flow is truncated by the magnetosphere. PDS of accreting X-ray pulsars where the neutron star is close to the corotation with the accretion disk at t he magnetospheric boundary, have a distinct break/cutoff at the neutron star spin frequency. This break can naturally be explained in the perturbation propagation model, which assumes that at any given radius in the accretion disk stochastic perturbations are introduced to the flow with frequencies characteristic for this radius. These perturbations are then advected to the region of main energy release leading to a self-similar variability of X-ray flux P~f^{-1...-1.5}. The break in the PDS is then a natural manifestation of the transition from the disk to magnetospheric flow at the frequency characteristic for the accretion disk truncation radius (magnetospheric radius). The proximity of the PDS break frequency to the spin frequency in corotating pulsars strongly suggests that the typical variability time scale in accretion disks is close to the Keplerian one. In transient accreting X-ray pulsars characterized by large variations of the mass accretion rate during outbursts, the PDS break frequency follows the variations of the X-ray flux, reflecting the change of the magnetosphere size with the accretion rate. Above the break frequency the PDS steepens to ~f^{-2} law which holds over a broad frequency range. These results suggest that strong f^{-1...-1.5} aperiodic variability which is ubiquitous in accretion disks is not characteristic for magnetospheric flows.
We present the first optical observation at sub-milliarcsecond (mas) scale of the microquasar SS 433 obtained with the GRAVITY instrument on the VLT interferometer. The 3.5 hour exposure reveals a rich K-band spectrum dominated by hydrogen Br$gamma $ and ion{He}{i} lines, as well as (red-shifted) emission lines coming from the jets. The K-band continuum emitting region is dominated by a marginally resolved point source ($<$ 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The jet line positions agree well with the ones expected from the jet kinematic model, an interpretation also supported by the consistent sign (i.e. negative/positive for the receding/approaching jet component) of the phase shifts observed in the lines. The significant visibility drop across the jet lines, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by less than 0.5 mas from the continuum source and resolved in the direction of propagation, with a typical size of 2 mas. The jet position angle of $sim$80$^{circ}$ is consistent with the expected one at the observation date. Jet emission so close to the central binary system would suggest that line locking, if relevant to explain the amplitude and stability of the 0.26c jet velocity, operates on elements heavier than hydrogen. The Br$gamma $ profile is broad and double peaked. It is better resolved than the continuum and the change of the phase signal sign across the line on all baselines suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin.
We compare the microlensing-based continuum emission region size measurements in a sample of 15 gravitationally lensed quasars with estimates of luminosity-based thin disk sizes to constrain the temperature profile of the quasar continuum accretion r egion. If we adopt the standard thin disk model, we find a significant discrepancy between sizes estimated using the luminosity and those measured by microlensing of $log(r_{L}/r_{mu})=-0.57pm0.08,text{dex}$. If quasar continuum sources are simple, optically thick accretion disks with a generalized temperature profile $T(r) propto r^{-beta}$, the discrepancy between the microlensing measurements and the luminosity-based size estimates can be resolved by a temperature profile slope $0.37 < beta < 0.56$ at $1,sigma$ confidence. This is shallower than the standard thin disk model ($beta=0.75$) at $3,sigma$ significance. We consider alternate accretion disk models that could produce such a temperature profile and reproduce the empirical continuum size scaling with black hole mass, including disk winds or disks with non-blackbody atmospheres.
We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope and the Large Area X-Ray Proportional Counter instrument onboard the Indian space telescope $AstroSat$ and archival observations from $Swift$. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break, i.e., the index becomes more negative below a characteristic break-timescale. Galactic black hole X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective black hole mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk-jet connection. However, evidence of such link have been scarce and indirect. Mrk 421 is a BL Lac object which has a prominent jet pointed towards us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale are translating into the jet, where the X-rays are produced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا